

Flour Milling Applications of the Alveograph

Dr. M. Hikmet Boyacioglu Cereal Scientist Applications Development Specialist KPM Analytics hboyacioglu@kpmanalytics.com Visco-elastic recorder!

Measures dough strength!

The Chopin Alveograph **assesses the ability of a dough** in which gluten is developed **to retain gas!**

The alveograph determines the gluten strength of a dough by measuring the force required to blow and break a bubble of dough.

> WHEAT KERNEL QUALITY

MILLING and FLOUR QUALITY

> PHYSICAL DOUGH (Rheological) PROPERTIES

BAKING QUALITY

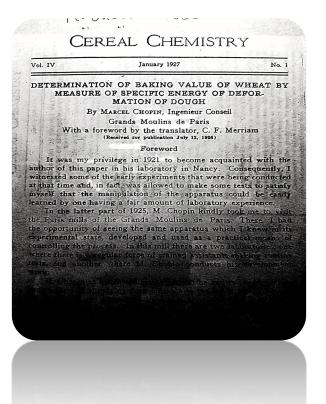
How to assess the quality of the flours?

- Physicochemical compositions!
- Rheological properties!
- Direct performance in the final product!

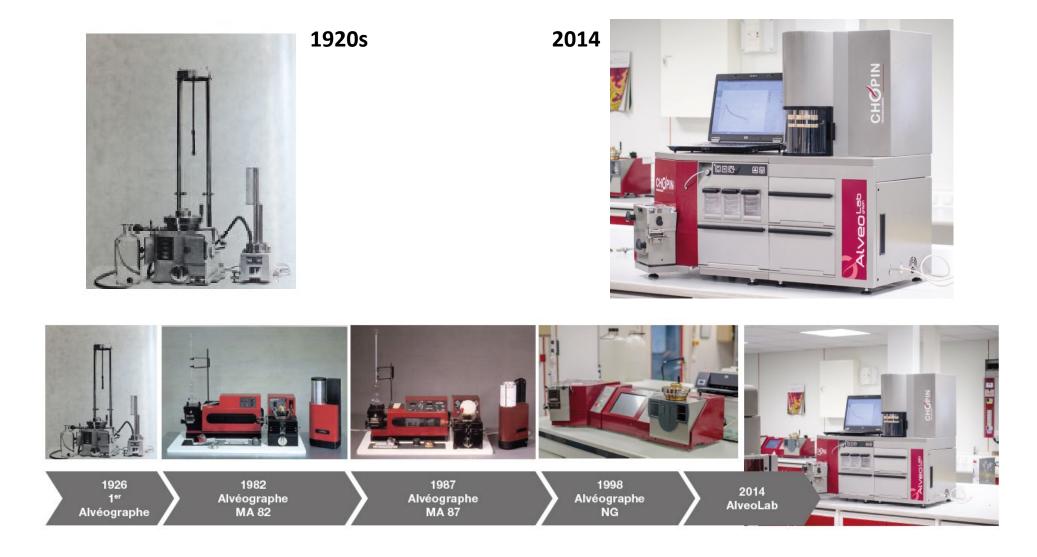
Rheological measurements on bread dough have long been used as a method to define its physical properties, the main aims of which are:

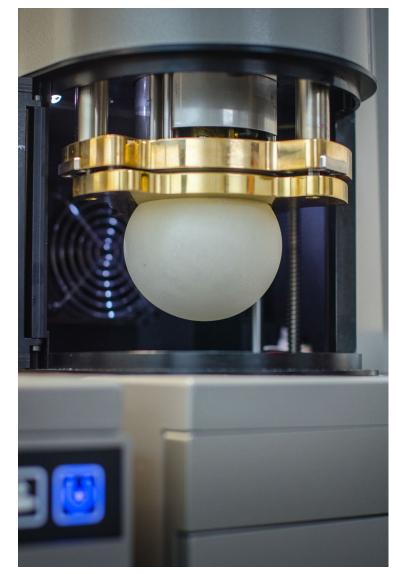
✓ To obtain a quantitative description of its mechanical properties,

- ✓ To characterize and predict its performance during processing and end-use,
- \checkmark To obtain information related to its molecular structure and composition.


(Dobraszczyk, 2016; 2020)

In the 1920's, Marcel Chopin became interested in the possibility of using doughtesting instruments in place of baking tests to assess the baking quality of French wheats. He attempted to develop a test would simulate, as closely as possible, the process that dough undergoes in bread baking.




A constant evolution...

One instrument to measure the viscoelastic properties of a bubble of dough as it is inflated

Baking, a matter of bubbles!

Baking, a matter of bubbles!

Mixing					
Gluten development	Air bubbles incorporated				
Proofing					
Gas production	Bubble growing				
Baking					
Gas expansion	Final structure				

The alveograph measures resistance of dough to extension and extent to which it can be stretched under the conditions of the method.

• In this method (AACC Method 54-30.02; Alveograph Method for Soft and Hard Wheat Flour) a sheet of dough of definite thickness prepared under specified conditions is expanded by air pressure into a bubble until it is ruptured. The internal pressure in bubble is graphically recorded on moving paper or automated integrator.

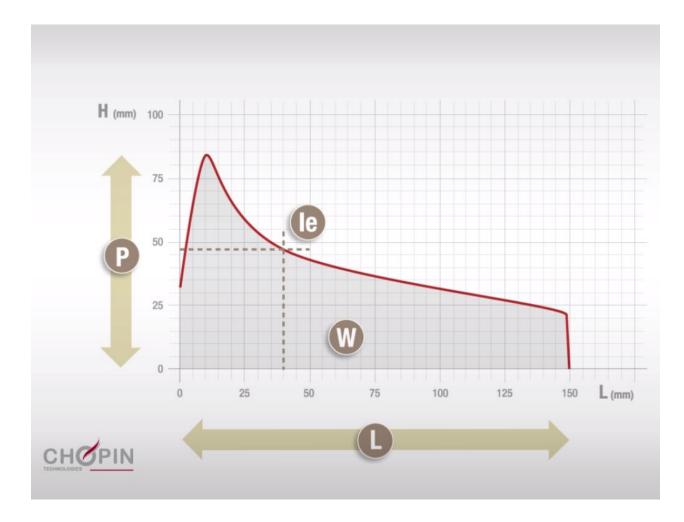
AACC Approved Methods of Analysis • 11th Edition

The Alveograph standard test - How to Conduct a Test

The Alveograph standard test (Hyd 50%, base 15)

Mixing 8min 24°C Extrusion + shaping Resting 20min 25°C Blowing 20°C 65% RH

K P M

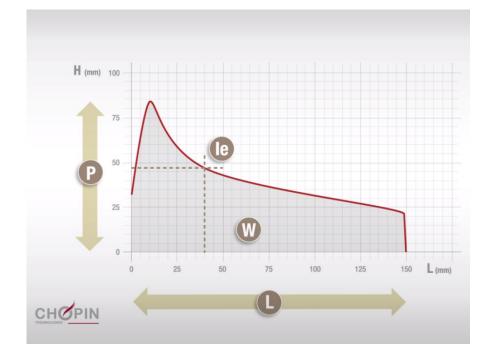

ΡΜ

- The Alveograph is an instrument for measuring the properties of a bubble of dough as it is inflated.
- \rightarrow tenacity, extensibility, elasticity and baking strength
- An Alveograph is always composed of two inseparable parts: the kneader and the Alveograph itself.

Characteristic curve

Specifying flour based on Alveograph measurements :

• P: Tenacity of the dough (Capacity to resist deformation)


• L: Extensibility of the dough (Maximum volume of air the bubble can contain)

• P/L: Curve configuration ratio

• **Ie: Elasticity index**, le = P200/P (P200: Pressure at 4 cm from the beginning of the curve)

• W: Dough baking strength (Area under the curve) or Energy value

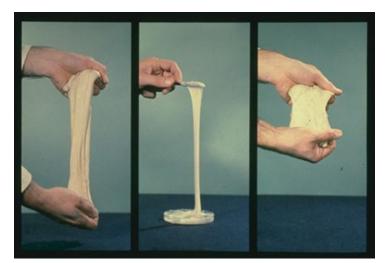
Specifying flour based on Alveograph measurements :

• P: Tenacity of the dough

- A stronger dough requires more force to blow and break the bubble (higher P value).

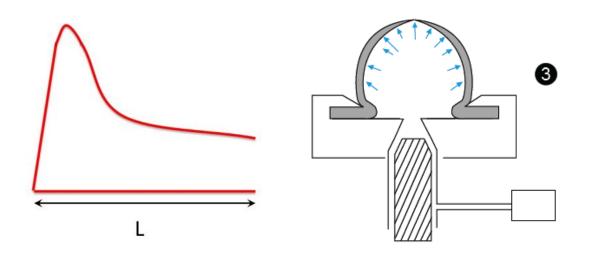
• L: Extensibility of the dough

- A bigger bubble means the dough can stretch to a very thin membrane before breaking.


- A bigger bubble indicates the dough has higher extensibility; that is, its ability to stretch before breaking (L value).

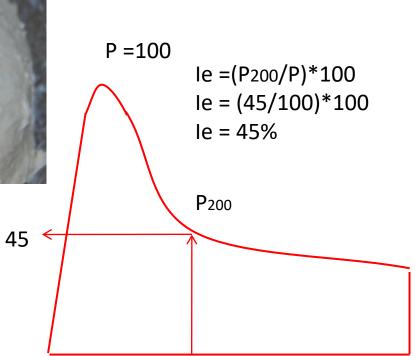
• W: Dough baking strength

- A bigger bubble requires more force and will have a greater area under the curve (W value).


- The parameter P is the maximum overpressure needed to inflate the dough bubble. The parameter is also called the dough tenacity.
- > P is one of the most used alveograph parameters.
- It is the indicator of dough resistance to deformation, but it has also been claimed that it is an indicator of dough tensile strength in the initial stage of deformation, related to the stiffness, shortness and tightness of the dough, an indicator of dough stability.

Ρ

Extensibility, L or G


- L (average abscissa to rupture), it is a measure of how much the dough can be extended before it breaks.
- > L has strong, positive correlations with several bread properties, including bread volume!

G (swelling index) is related to the spring and the shortness of the dough!

- Elasticity represents the capacity of a dough to stretch and return to its initial position when stress ends.
- It is measured 40 mm after the beginning of the curve (L = 40)
- The bubble volume at this instant indicates the dough resistance to deformation. It is a way to evaluate the elasticity.

Focus on elasticity measurement

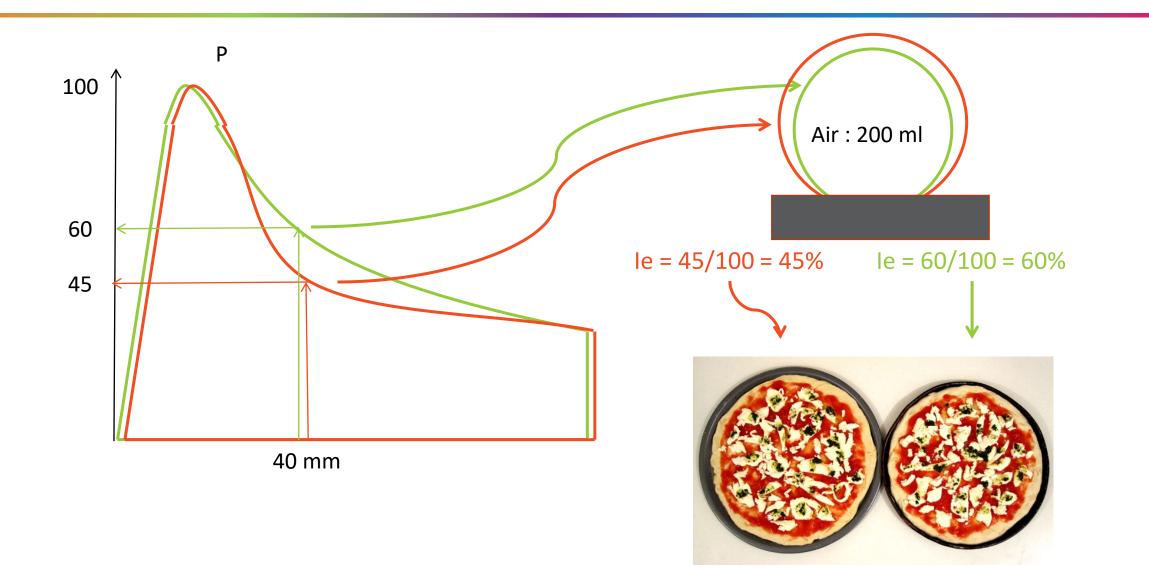
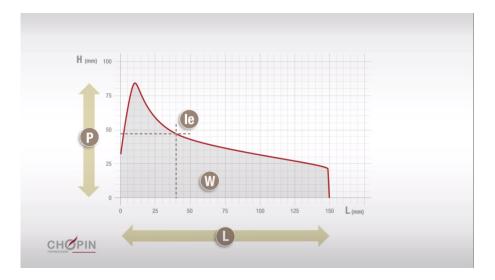



Figure given as example. Do not correspond to real values

Configuration ratio value combines the readings of tenacity and dough extensibility.

- > It is the balance between dough strength and extensibility.
- High P/L indicates a resistant and inextensible dough, while low P/L indicates a weak and extensible dough!

Chopin Alveograph

Main Applications

Alveograph: From Farm to Table

BREEDERS

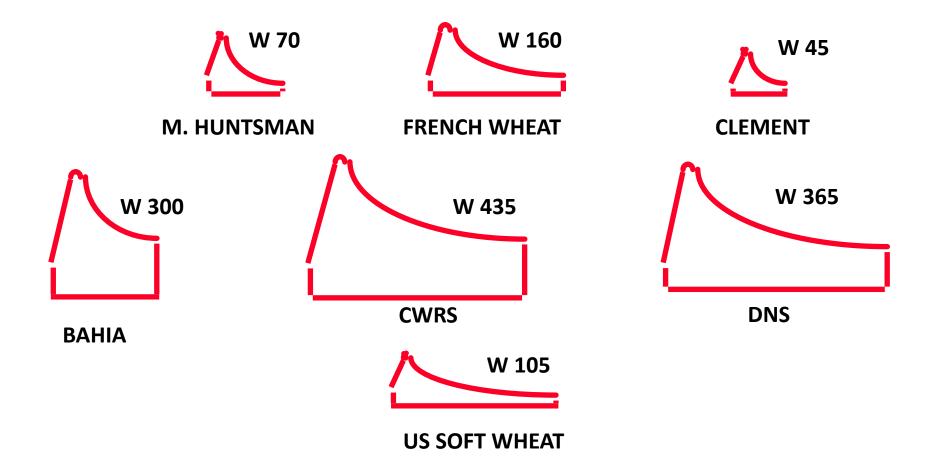
- Characterizing wheat
- Detect insect contaminated wheat

MILLERS

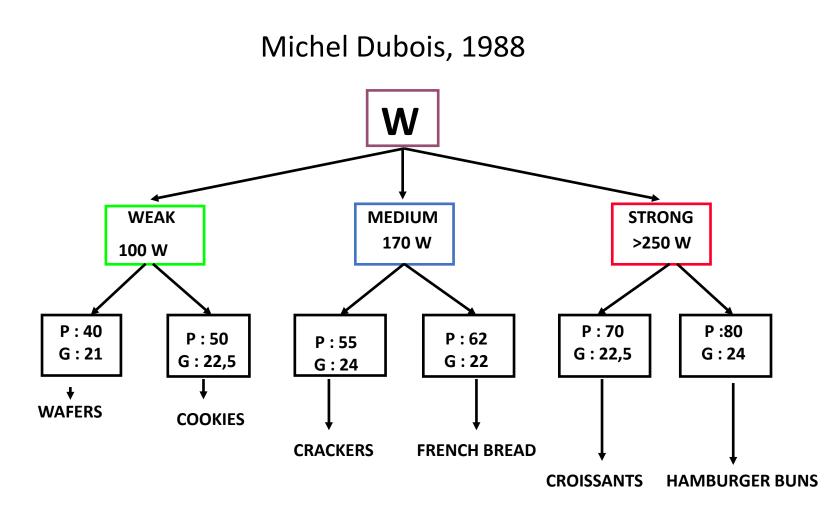
- Characterizing wheat and flour according to their application
- Detect insect contaminated wheat
- Analysis of different flour mill streams
- Wheat or flour blending
- Measuring the impact of additives
- Assessing the impact of damaged starch

SECONDARY PROCESSING INDUSTRIES

- Determine specifications for the flour received (R&D)
- Verifying the conformity of delivered flours (QA)
- Measuring the impact of additives

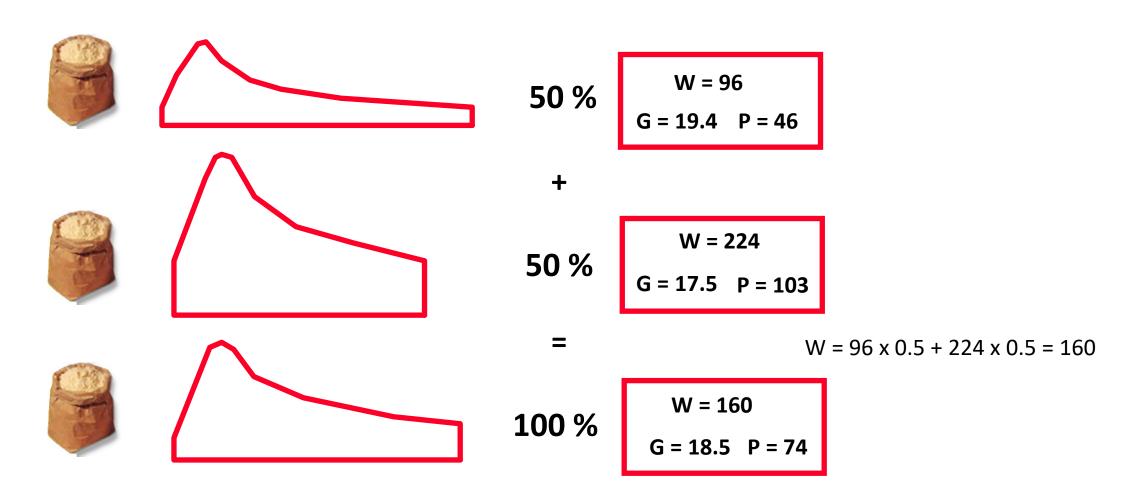


Benefits of the Alveograph for Millers



- ✓ Monitor incoming wheat or flour to ensure you are starting with high-quality ingredients,
- Improve efficiency by conducting multiple tests throughout the day,
- ✓ Understand dough behavior for testing new recipes and controlling additives,
- Measure and adapt flour according to specifications,
- Understand dough behavior to provide consistent products for your brand,
- ✓ Use proven, industry-standard analysis for your testing procedures!

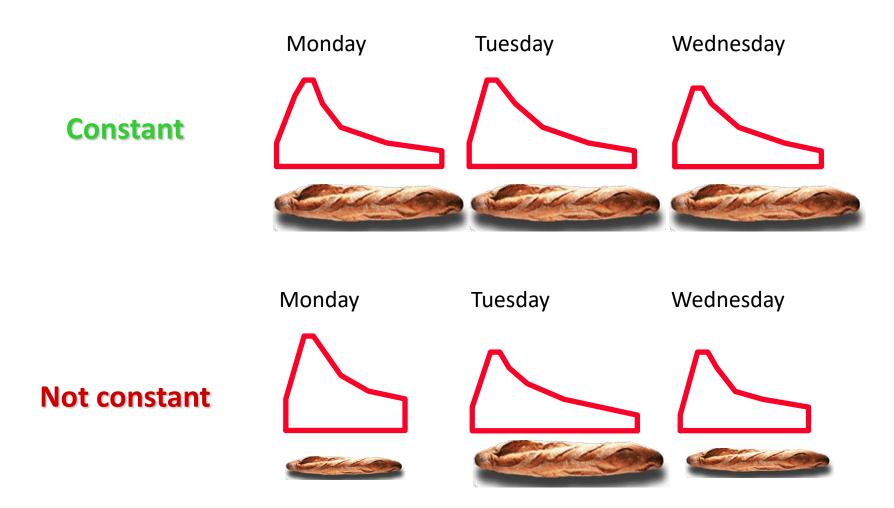
Wheat or flour blending is an essential milling operation.


The Alveograph data W, P, L, P/L are well defined physical values. They follow the mathematical rule for blends, and allow the user to:

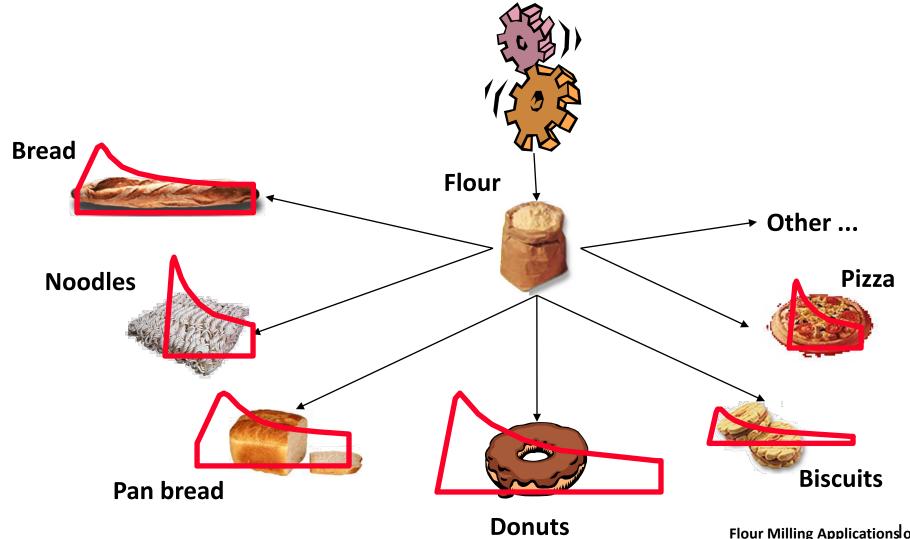
- Either foresee the future characteristics of two or more flours which will be mixed in predetermined proportions.

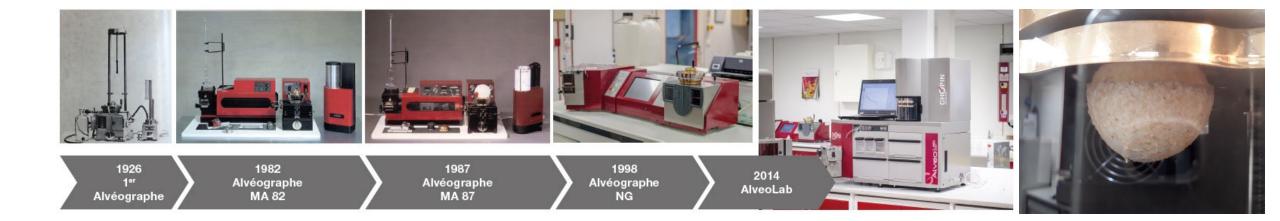
- Or research on the blend's percentages from 2 or more silo cells of different qualities in order to obtain flours with given characteristics.

Blend wheats or flours



Hard White	Pacific Northwest		California	a Southern Plains			Northern Plains	
Hard Write	Low	Very High	High	Low	Medium	High	High	Very High
Wheat Grade Data:								
Test Weight (lb/bu)	61.4	60.9	63.8	61.6	62.6	62.5	62.3	62.3
(kg/hl)	80.7	80.1	83.8	81.0	82.3	82.2	81.9	81.9
Damaged Kernels (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Foreign Material (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0
Shrunken & Broken (%)	1.6	1.9	0.5	0.8	0.7	1.3	0.5	0.5
Total Defects (%)	1.6	1.9	0.5	0.8	0.7	1.3	0.7	0.5
Grade	1 HW	1 HW	1 HW	1 HW	1 HW	1 HW	1 HW	1 HW
Wheat Non-Grade Data:								
Dockage (%)	1.0	0.5	0.0	0.9	0.8	0.5	0.2	0.1
Moisture (%)	9.1	9.8	7.8	10.8	10.4	11.2	9.6	10.2
Protein (%) 12%/0% moisture basis	11.1/12.6	13.9/15.8	12.7/14.4	10.9/12.4	12.4/14.1	13.1/14.9	13.2/15.0	13.9/15.8
Ash (%) 14%/0% moisture basis	1.41/1.64	1.51/1.76	1.37/1.59	1.40/1.63	1.36/1.58	1.55/1.80	1.63/1.90	1.43/1.66
Dough Properties:								
Farinograph:								
Peak Time (min)	7.4	7.8	5.8	2.7	7.0	5.8	6.9	7.3
Stability (min)	22.2	16.2	9.0	8.7	13.7	11.4	14.4	19.1
Absorption (%)	55.5	61.1	60.3	54.2	57.7	58.8	56.4	58.7
Alveograph: P (mm)	75	81	73	52	68	61	59	67
L (mm)	154	202	198	154	164	203	203	202
P/L Ratio	0.49	0.40	0.37	p.34	0.41	0.30	0.29	0.33
W (10-4 joules)	358	432	337	222	307	329	384	398
Extensograph: Resistance (BU)	461/653	536/888	421/927	315/351	350/728	420/648	627/806	476/887
(45/135 min) Extensibility (cm)	21.8/17.4	23.7/17.4	22.0/15.4	19.2/17.9	16.0/12.9	20.2/18.3	19.3/17.1	22.1/14.7
Area (sq cm)	137/145	162/188	112/173	85/83	69/115	105/147	134/159	129/153
Baking Evaluation:								


Check production regularity


Make flours adapted to their application

K P M

Flour Milling Applications of the Alveograph | 32

1920s	2014	2022
1st	1st	Whole Wheat
Alveograph	Alveolab	Flour test

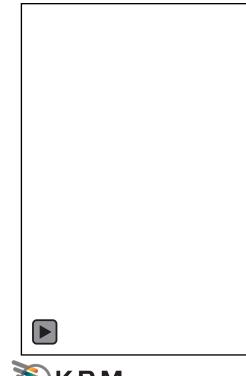
N

Whole wheat flours can be very different from one another... ... but have common characteristics:

- Strong water absorption capacity,
- Long development time of the dough,
- Increased fragility of the gluten network due to the presence of bran particles,

Thanks to the numerous Alveolab adjustment possibilities creation of adapted protocol :

- higher hydration,
- and a <u>higher kneading speed</u> to ensure optimum development of the gluten network,
- a lower swelling rate to ensure a smooth deformation of the dough,


Standard protocol (NF EN ISO 27971) not adapted

Whole Wheat Flour protocol = OK

Whole wheat flour – Standard vs Whole wheat flour protocol by Alveograph

Protocol	NF EN ISO 27971	Whole Wheat Flour
Hydration	50 % b15	60 % b15
Mixing rotation speed	60 rpm	80 rpm
Blowing bubble air flow	96 l/h	40 l/h

This *Whole Wheat Flour protocol* is the result of a long development work:

- Testing many different protocols to find the best combination
- Validation of this protocol on :
 - a wide variety of flours,
 - by different operators
 - and on different instruments
- Development of a specific algorithm and software to meet the technical challenges posed by complete flours (L detection)
- Extensive validation tests of this new software

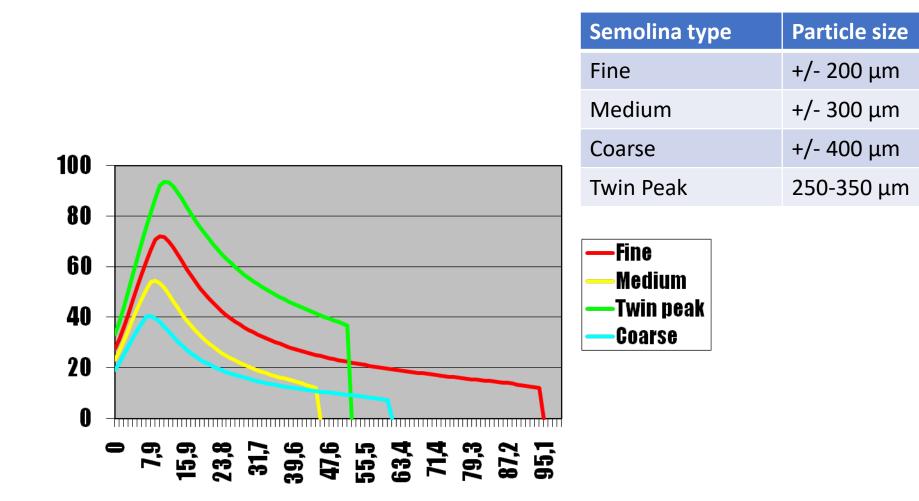
	Parameters	Test levels		
	Hydration (b15%)	50%	55%	60%
	Mixing T°C	20°C	24°C	28°C
ts	Mixing Speed	40 rpm	60 rpm	80 rpm
ıph Tes	Mixing Time after cleaning	4 min	6 min	10 min
Alveograph Tests	Resting time (at 4 min of mixing)	0 min	5 min	10 min
	Resting T°C	20°C	25°C	30°C
	Resting Time	10 min	20 min	30 min
	Air Flow	35 L/h	60 L/h	96 L/h

Alveolab Test matrix:

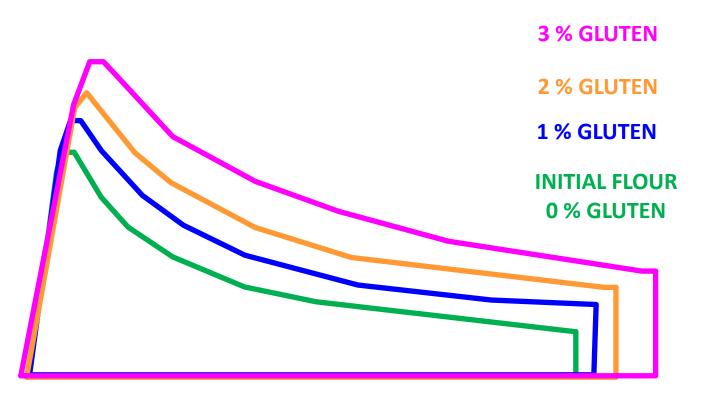
Example of the combinations tested to develop the Whole Wheat Flour protocol

Whole wheat flour protocol by Alveograph: How to conduct a test

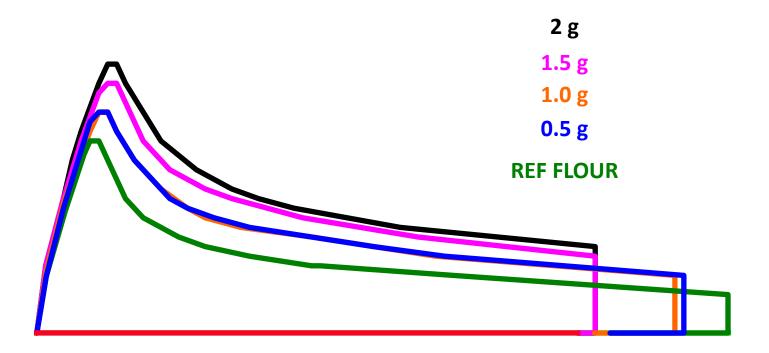
- No change for the operator (compared to NF EN ISO 27971)
- Protocol differences (hydration level, kneading speed, air flow) are automatically managed by the Alveolab
- The duration of a test is identical

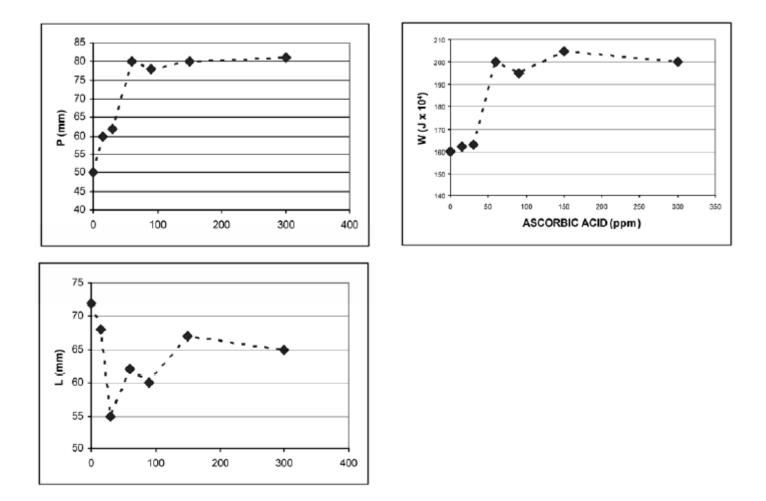


Mixing 8min / 24°C Extrusion + shaping

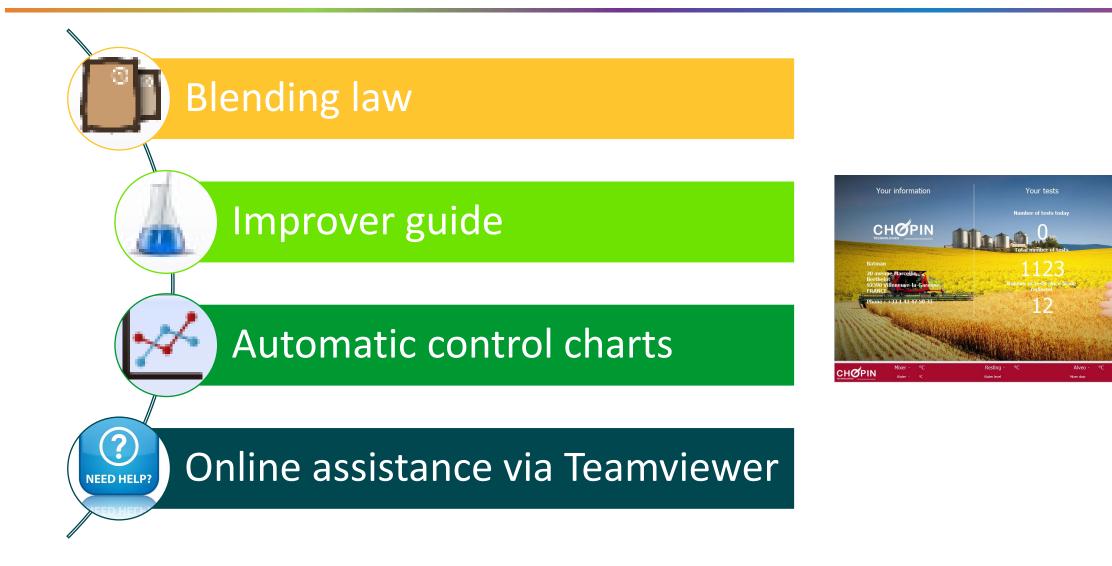

Resting 20min / 25°C Blowing 20°C / 65% RH

<u>NB</u>: As with white flours, the behavior of the doughs (water absorption speed, extrusion speed, stickiness ...) vary greatly from one flour to another





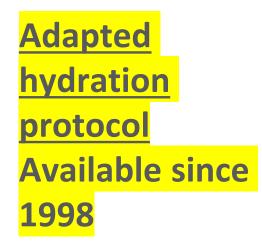
Effects of Additives: Ascorbic acid

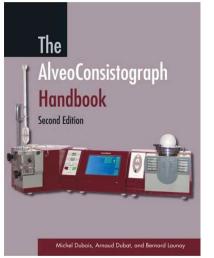


Effects of some additives on the Alveograph curve

AlveoLab Iome Tests Protocols Partners Tools Co	onfiguration Maintenance	the scale hourses		- 0 -
st Blending law Traceability List Add Edit	guide			
Name	Effect on P	Effect on W	Effect on L	
Amylases	-	-	+	
Amylase-hemicellulase complexes	-	-	+	
Beta-amylase	-	-	+	
Glucoamylase	-	-	+	
Glucose oxidase	+	-	-	
Proteases	-	-	+	
Lipase	+	+	-	
Hemicellulase	=	+	+	
Ascorbic acid	+	+	-	
Potassium bromate	+	+	-	
Calcium peroxyde	+	-	-	
Lecithin-based emulsifiers	+	+	+	
DATEM-based emulsifiers	-	+	+	
Malt	-	-	+	
Malted barley	-	-	+	
Vital wheat gluten	+	+	=	
Azodicarbonamid	+	=	-	
Sodium metabisulfite	-	-	-	
Cysteine	-	-	+	
Acidity regulators	+	+	+	
Inactivated Yeast	-	-	=	
Mixer 26 °C	Resting 28	°C Alveo 25 °C	Hygrometry: 20 %	
CHOPIN Water 24 °C	Water level: 🔔	Mixer door : 🔹	Alveo door : 🔹	•4

Intuitive and complete software

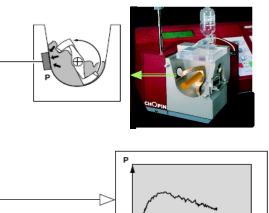

Your last test

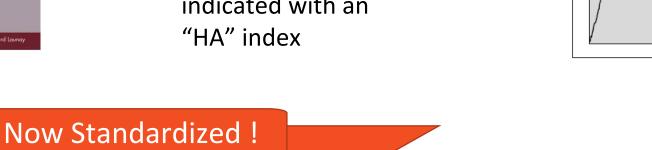

Q.

NEW opportunities to analyze wheat flour

You can play with:			CHOPIN			
rou can play with.	Parameter	Minimum	standard	Maximum		
TEMPERATURES	Water temperature	15°C	20°C	22°C		
	Mixer temperature	18°C	24°C	35°C		
SPEEDS Office	Mixing speed	30 rpm	60rpm	100 rpm		
	Mixing time before cleaning	0.5 min	1 min	3 min		
	Cleaning time	0 min	1 min	3 min		
	Mixing time after cleaning	0 min	6 min	60 min		
	Resting time during mixing	0 min	0 min	60 min		
	Mixing time after resting	0 min	0 min	60 min		
SAMPLES 5	Number of patties	1	5	6		
	Resting temperature	18 °C	25°C	35°C		
	End of resting time from end of mixing	0 min	28 min	300 min		
•• -	Alveo analysis chamber temperature	18°C	20°C	30°C		
HYGROMETRY	Alveo analysis chamber relative humidity	30%	65%	90%		
	Air flow	40 L/h	96 L/h	110 L/h		
	Air insufflation Time	4 s or 4 ml	-	50 s or 33000 ml		
-	Acquisition time	30 s	-	3600 s		
🐔 К Р М	Flour Milling Applications of the Alveograph 43					

The Alveograph is perfectly suited for strong hard wheats!





- Hydration determined thanks to the **Consistograph**
- Test is about 5 minutes

ICC 188

Obtained results are • indicated with an "HA" index

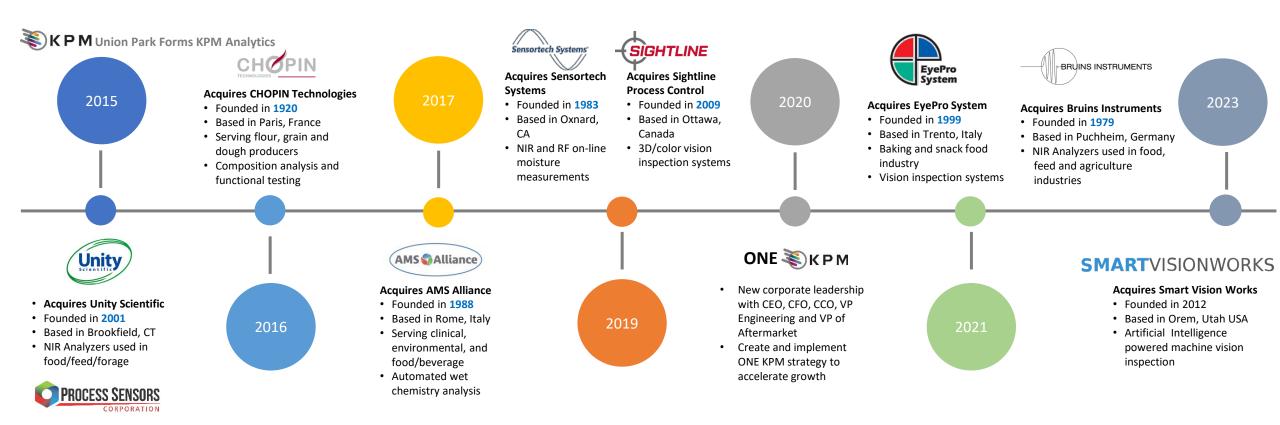
CONCLUSION

- The Alveograph test provides results that are common specifications used by flour millers and processors to ensure a more consistent process and product.
- Strong gluten flour will have high P values and is preferred for breads!
- Weak gluten flour with low P value (strength of gluten) and long L value (extensibility) is preferred for cakes and other confectionary products!

- Alveograph analysis is an established method for flour characterization, and several alveograph parameters have been introduced over the years.
- ✓ The alveograph is an empirical tool used to assess the baking quality of wheat flour.
- The results from the alveograph is widely used for commercial benchmarking of wheat flour and decision making.

KPM Analytics Introduction

We craft assurance.


For our partners. For their customers.

Timeline and Progression of KPM Analytics

KPM Analytics brands have long and successful histories servicing customers worldwide

- **Acquires Process Sensors**
- Founded in 1996
- Based in Milford, MA
- On-line moisture gauges
- NIR technology

Industries We Serve

KPM's main focus is serving food producers, helping them ensure quality and protect their brand.

KPM is leading the industry for quality solutions at all stages of production.

Our product lines are also widely used in agriculture and feed and forage to measure critical quality parameters.

Environmental, chemistry and industrial industries benefit from our accurate lab and sensing technologies.

KPM customers are supported by our global sales, service and authorized distribution network.

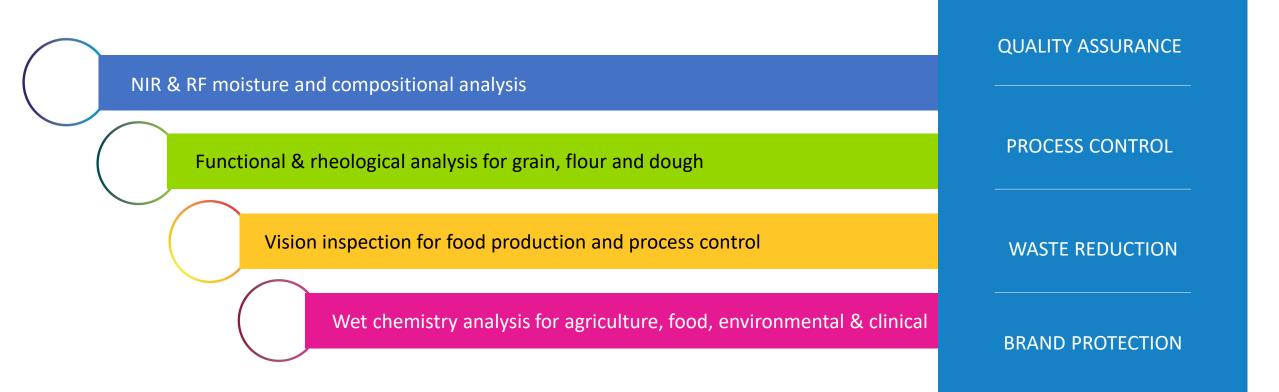
U.S.A. (Boston) +1 (774) 462-6700

Canada (Ottawa) +1 (800) 768-6821

U.K. (London) +44 1536 408066

France (Paris) +33 01 41 47 71 38

Poland (Warsaw) +48 22 6739526


Germany (Frankfurt) +49 (6721) 988 6720

Italy (Rome) +39 0774 354441

China (Beijing) +86 (10) 63345789

Malaysia (Kuala Lumpur) +86 (10) 6334 5780

Thank you!

hboyacioglu@kpmanalytics.com

