An Overview of the Milling Industry in China

Ningbo Li, Ph.D

IAOM Spring Technical Conference and Joint District Meeting Manhattan, KS 03/16/2017

Education Background

B.S. Grain Science (Milling option), 2004M.S. Grain Science (research area: Wheat milling, cereal chemistry), 2008Henan University of Technology, China

PhD. Biological and Agricultural Engineering (research area: protein chemistry and bio-processing), 2013 Kansas State University

Professional experience

- Design flour mills
- Zhixin was founded by the professors in Department of Grain Science at Henan University of Technology in 2001.
- Zhixin designed more than 600 flour mills in China and other countries.

Zhixin Grain Engineering Technology CO., LTD

Outline

Overview of the milling industry in ChinaDevelopment of China milling Technology

China Crop Production Data

- Population: 1.4 billion
- Largest grain producer (500 MT annually) (US: 360 MT, India: 220 MT)
- Annual grain production:
 - Rice: 150 MT
 - Corn: 120 MT
 - Wheat: 100 MT (US: 55-60 MT)
 - Soybean: 15 MT
- Annual import:
 - Wheat: 9.6 MT (US, Canada)
 - Soybean: 80 MT (US, Brazil, AR)
 - Corn: 7.2 MT (US, Ukraine)
 - Rice: 5.3 MT

China Flour Mills Data

- More than 4,000 flour mills
- Large/middle size mills are the minority

China Milling Industry Data

Largest flour mill in world is in China (Wudeli Flour Group)

- Wudeli Flour Group:
 - Capacity: 62,000 tons/day (1.1 million cwts/day)
 - Market share: 21%.
 - 36 mills (83 line)
 - Employees: >5,000

- Ardent Mill:
 - Capacity: 26,000 tons/day (475,800 cwts)
 - Market share: 31%.
 - 40 mills
 - Employees: 2,400

Wudeli Flour Group

Capacity is projected to 62,000 tons/day by 2017 (1.1 million cwts).

Zhixin designed more than 15,000 ton/day for Wudeli

Mill size vs profit model

- Class I: large mill + large storage capacity (>12 month)
 - Profit: wheat trade and processing
- Class II: large mill + intermediate storage capacity (3-12 month)
 - Profit: wheat processing and trade
- Class III: middle mill (300-500 t/d) + small storage capacity (1 month)
 - Profit: wheat processing only
- Class IV: small mill (<300 t/d) + small storage capacity (10 days)
 - Profit: wheat processing only

Profit is low: 1% (2015-2016), mainly caused by the "cliff-like drop" of price of wheat bran (from 15 cents/lb to 8.7 cents/lb).

Cost structure of EU and China mills

Profit:1-2%

China

Example: Cost structure of China Flour

Cost structure to process one Ton of wheat

(36.74 bushel)

\$/

\$0.68

\$0.21

\$355.00 \$9.67

\$7.60

\$/Ton |Bushel|Structure

91.50%

6.50%

2.00%

Mills. (operating time is 80%)

¥/Ton

¥2800

n, Capitial | ¥147-170 | \$25.00

¥30-60

Wheat

Production. Distributio

cost

Profit

China Milling Industry Data

- Serious overcapacity (milling capacity:250 million tons per year, which is 2.5 times of the wheat production)
- Small mills are closed because they are less competitive.
- Big mills are getting larger and larger.

Country	Peak	Operating time	Stable	Operating time (target)
US	?	n/a	190	90%
France	1,400	n/a	360	
Japan	1,000	n/a	110	
China	>4,000	<50%	?	

Wheat flour based food in China

Wheat flour based food in China

Twisted cruller

China Milling Technology

Milling technology innovation:

- Optimum low-ash flour extraction rate
- Optimum total flour extraction rate
- Optimum the quality of finished products
- Optimum the capacity of the mill
- Flour safety
- Maintain flour quality consistence
- Manufacturing cost (Power consumption)
- Automation
- Others

China Milling Technology – history

- 1950-1980: short flow diagram (straight flour, ash is high)
- 1980-2000: medium flow diagram (purifiers, flour graded by ash)
- 2000-2008: medium flow diagram (ash content and electricity cost)
 2009-present: long and wide flow diagram (low-ash flour, particle size, flour quality)

Period I: 1950-1980

- Break and reduction systems
- 1-3B, or 4B, 1-3 M:
 - 1B produces up to 25-50% of flour; 1B break release: 50-70%; 1M produce 25% flour
- Extraction: 83.6%, Ash: 0.97%,
- Particle size: 210 µm
- Corrugated rolls
- Electricity: 40 kw/ton

Period II: 1980-2000

- Medium lenghth flow diagram (Buhler, Ocrim, Satake)
- B: Corrugated roll; M: Smooth roll
- 1-4 B, 1-7 M, 2S, 2T, 4-5 P
- Roll length: 12 mm/100 kg/24 h
- Sifting area: 0.08 m²/100 kg/24 h
- 1B break release: 30-40%, flour extraction of 1B: 4%
- Total extraction rate: 74-75% (F1: 53%, 0.53% ash; F2: 19.8%, 0.66% ash)
- Particle size: 12-13 XX (108 μm)
- Electricity: 75 kw/ton (17.8 cwt)

Period III: 2000-2008 -- how to reduce energy consumption

- Medium flow diagram (Zhixin, Golden Grain, Buhler)
- 1-4 B, 1-8 M, 2S, 2T, 4-5 P
- Roll length: 10-12 mm/100 kg/24 h
- Sifting area: 0.08-0.09 m2/100 kg/24 h
- IB break release: 30-36%, flour extraction: 3-4%
- Total extraction rate: 75-76% (F1: 30-35%, 0.43% ash; F2: 35-40%, 0.58% ash; F3: 6%, 1.2 ash)
- Particle size: 12-14 XX (100 µm)
- Electricity: 60 kw/ton (60 kw/17.8 cwt)

Impactor

Period III: 2000-2008

Impactor (DM): D1, D2, 1S, 1M, 2M

Particle size: 108-181 µm If capacity: 600 T

- DM: 600 x 12%
 =72 T/D
- 2M capacity:=20 T/D
- 2M motor:
 - = 15 kw/h x 4
- Impactor motor:
 - = 15x1 kw/h

Period III: 2000-2008

Advantage:

Energy consumption is low (60 kw/ton)

Disadvantage:

- Particle size is too small (100 µm)
- Ash content is high

Small particle size results in high damaged starch

<160 µm, DS 16 UCD

<123 µm, DS 21 UCD

<90 µm, DS 27 UCD

- Flour with particle size 11xx (123 µm) and DS 20.8 UCD (hard wheat) makes the best bread.
- Low DS results in coarse and non-uniform crumb texture.
- High DS lead to low volume and sticky crumb structure.

Li et al. 2009 (MS thesis)

Noodle and cake need lowash flour

Effect of ash on noodle quality

- High-ash flour noodle is darker than low-ash flour.
- High-ash flour has higher polyphenol oxidase (PPO) content.

Period IV: 2009-present --*Significant improvement* (Zhixin, Golden Grain, Buhler)

Objectives:

- Increase low-ash flour yield
- Increase total flour yield
- Particle size

Period IV: How to increase low-ash flour yield?

Milling diagram

- Minimum the flour yield from the break system (B).
- Maximum the high quality middlings from break system to the purification system.
- Must improve the break release quality.

Li et al. 2009 (MS thesis)

Midds

Period IV: Re-purification

Midds compound

Pure endosperm

Summery of Period IV: 2009-present

- Longer and wider flow sheet (5B, 8M, 2S, 2T, 45-17P)
- Roll length: 14-16 mm/100kg/24h
- Sifting area: 0.1-0.12 m²/100kg/24h
- Break release quantity vs quality
- Purification: 3.5 mm (up to 17 P; middlings :150-950 µm); Repurification
- Roll parameters
- Total flour yield: 78-80%. F1: 55% with ash content of 0.4-0.45%
- Energy consumption: 74 kw/t

Future trend

- Merge: mills number will decrease.
- Flour safety: Vomitoxin (mycotoxin, DON) fast detection and removing technology.
- Automation (clean, blending, milling, post-treatment optimization and modelling).
- Special flour development.
- Whole grain milling (wheat, barley, buckwheat) (currently 1%) (taste, safety, quality, color, nutrition, stability).
- Value-added products development from high-ash flour and by-products.

Thank you !