Predicting the Wheat Flour Size Segregation Process From Particle Properties

KALIRAMESH SILIVERU

Research Associate Dept. of BAE / USDA – ARS Contact: <u>kaliramesh@ksu.edu</u>

Introduction

- Majority of wheat is converted into flour
- Color, genetics, hardness, and growing season 6 classes

Sieving Process

- Three important particle motions (Nicholas et al., 1969):
 - Filtration of fines through the matrix of powder on the mesh
 - Free passage of particles through the mesh
 - Interrupted passage or blinding of particles in the mesh
- Loss in throughput is observed when sieving soft wheat flour compared to that of hard wheat flour (Neel and Hoseney, 1984).
- Particle size of wheat flour affects its physicochemical properties (Wang and Flores, 2000).

Soft wheat Flour

(Source: U. S. Wheat Associates, 2011)

(Source: Roberts and Beddow, 1968)

Research hypothesis: Flour particle characteristics affects the sifting behavior of wheat flour.

KANSAS STATE

Research Objectives

- Objective: **1** Determination of surface physical and chemical characteristics of hard and soft wheat flours.
- Objective: **2** Determination the significance of physical and chemical characteristics on the bulk cohesion of wheat flours.
- Objective: **3** Develop a correlation to predict the flow behavior of wheat flours.
- Objective: **4** Develop and validate of discrete element method (DEM) model to describe the wheat flour sieving process.

Surface Characteristics

- Determination of surface physical and chemical characteristics of hard and soft wheat flour particles.
 - Surface lipid content
 - Shape factor
 - Surface roughness

Materials

Flour from:

- Hard red winter wheat
- Soft red winter wheat

45, 75, and 90 μ m particle size

• Lab scale milling – AACC method (26-21.02; 26-31.01)

(Particle size selection : Neel and Hoseney, 1984)

Methods

Property	Test
Surface lipid	 Surface staining – Sudan IV dye, and Ethylene glycol (Chiffelle and Putt, 1951) ▶ 0.35 g dye/100 ml ethylene glycol ▶ Program written in MATLAB
 Shape factors ➢ Form factor; Roundness ➢ Aspect ratio; Compactness 	 Scanning Electron Microscopy images ×500 magnification ➢ Shape descriptors plug in (V 1.48) in ImageJ
Surface roughness	Atomic force microscopy $ \geq R_q = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (Z_i - Z_{ave})^2} $

Surface Lipid Composition

Surface lipid composition

** Values with same letters on a column are not significantly different for a particular size by least significant difference (LSD) comparison of means. ($\alpha = 0.05$)

Shape Factor

- Shape factor Shape descriptors plug in (V 1.48) in ImageJ
- Shape descriptors form factor, roundness, aspect ratio, and compactness

Interlocking in circular and irregular particles

Shape Factor

Range of values of shape factors from the regular shapes.

Shape Descriptors

Measured Shape Descriptors values

Surface Roughness

3D topography of HRW 90 μm and SRW 90 μm particles. Scan size 5 \times 5 μm and scan rate of 1-2 Hz.

Surface characteristics: Conclusions

- The surface lipid composition and roughness were higher in soft wheat flours.
- The breakage behavior of flour components (protein and starch) influenced the overall shape and surface roughness of wheat flour.
- The irregular shape of the particle causes inter-locking behaviour between particles which could affect flour movement during sieving.
- The differences in surface characteristics could lead to agglomeration of flour particles that could affect the sieving process and also affects the product quality and uniformity.

Bulk Cohesion Method

FT4-Powder rheometer

Shear cell measurement

Results

Commente	Cohesion, kPa				
Sample	0.5 kPa	1.0 kPa	1.5 kPa		
HRW (< 45 μm)	$0.25\pm0.01^{\rm Bc}$	0.39 ± 0.01^{Ab}	0.74 ± 0.02^{Aa}		
Η 45 - 75 μm	0.11 ± 0.01^{Cb}	$0.12\pm0.01^{\text{Bb}}$	0.25 ± 0.01^{Ca}		
Η 75 - 106 μm	$0.06\pm0.01^{\rm Ec}$	$0.16\pm0.01^{\text{Bb}}$	0.21 ± 0.02^{Ca}		
SRW (< 45 μm)	0.32 ± 0.01^{Ac}	$0.43\pm0.02^{\rm Ab}$	$0.73\pm0.06^{\mathrm{Aa}}$		
S 45 - 75 μm	$0.08\pm0.002^{\rm Dc}$	$0.14\pm0.03^{\text{Bb}}$	0.29 ± 0.02^{Ba}		
S 75 - 106 µm	$0.06\pm0.001^{\rm Ec}$	$0.10\pm0.002^{\rm Cb}$	$0.18\pm0.01^{\text{Da}}$		

** Values with same upper case letters in a column are not significantly different for different particle sizes; Values with same lower case letters in a row are not significantly different for a particular size by least significant difference (LSD) comparison of means. ($\alpha = 0.05$)

Commente				
Sample	0.5 kPa	1.0 kPa	1.5 kPa	
HRW (< 45 μm)	$1.07\pm0.01^{\mathrm{Eb}}$	$1.13\pm0.15^{\mathrm{Db}}$	1.11 ± 0.09^{Ca}	If FF is
Η 45 - 75 μm	2.47 ± 0.23^{Cc}	$3.26 \pm 0.10^{\text{Cb}}$	$4.18\pm0.30^{\text{Ba}}$	<1: Hardened 1-2: Very Cohesive
Η 75 - 106 μm	$4.45\pm0.29^{\rm Aa}$	$4.62\pm0.24^{\rm Aa}$	5.14 ± 0.20^{Aa}	 2-4: Cohesive 4-10: Easy flowing >10: Free flowing
SRW (< 45 μm)	$1.18\pm0.02^{\text{Da}}$	$1.09\pm0.04^{\mathrm{Da}}$	$1.32\pm0.04^{\text{Da}}$	Ref: Fitzpatrick et al.,
S 45 - 75 μm	$2.93\pm0.15^{\rm Bb}$	$3.13\pm0.04^{\rm Cb}$	$3.73\pm0.27^{\text{Ba}}$	2004
S 75 - 106 μm	$3.03\pm0.45^{\rm Bb}$	$3.34\pm0.04^{\rm Bb}$	$3.74\pm0.17^{\text{Ba}}$	

** Values with same upper case letters in a column are not significantly different for different particle sizes; Values with same lower case letters in a row are not significantly different for a particular size by least significant difference (LSD) comparison of means. ($\alpha = 0.05$)

	Cohesion	Flow Function	AIF
Moisture content	0.98**	-0.98**	ns
Particle size	-0.92**	0.96**	-0.94
Sifter load	0.99**	-0.95**	-0.83
Damaged starch	0.92**	-0.82**	ns
Protein	0.91* (Hard)	-0.84* (Hard)	ns
(-0.73* (Soft)	0.91* (Soft)	
Crude fat	-0.64** (Hard)	0.74** (Hard)	ns
	0.92* (Soft)	-0.86* (Soft)	

**, * Indicate significance at P < 0.01 and P < 0.05, respectively; ns, not significant.

Bulk cohesion: Conclusions

• High correlation between the physical independent variables (MC, PS, SL), chemical composition (damaged starch, protein, and fat) and the flow properties (cohesion, flow function, and AIF).

Predicting Flow Behavior

- Development of granular bond number (GBN) model for predicting flow behavior of wheat flours.
- Hard red winter flour
- Soft red winter flour

Size range

- a. 75 106 µm
- b. 45 75 μm

c. $< 45 \ \mu m$

Moisture content: 12 % (w.b)

Applied pressure: 1.0 kPa

Methods

Property	Test
 Particle characteristics > d_p - particle diameter > d_{asp} - asperity diameter > d₃₂ - Sauter mean diameter 	 Morphologi G3-ID morphologically directed Raman system (Malvern Instruments, Worcestershire, UK) ➢ Dry dispersion 0.5 bar ➢ 125 images
Surface energy	Inverse gas chromatography (IGC-SEA, Surface Measurement Systems, London, U.K.) $A = 24\pi D_0^2 \gamma_d$ (Israelachvili, 1992)
Flour blend preparation	Lab scale rotary mixer > 20 min; 60 rpm; 100 g of flour > 33.3/33.3/33.3 > 16.6/41.7/41.7 > 41.7/16.6/41.7 > 41.7/41.7/16.6

Model Development

• Cohesive force

$$F_{cohesion} = \frac{A}{12z_0^2} \left(\frac{d_p}{2(H_0/z_0)^2} + \frac{3d_{asp}d_p}{d_{asp}+d_p} \right)$$
$$A = 24\pi D_0^2 \gamma_d$$

• Granular Bond number (Bo_g)

$$Bo_g = \frac{F_{cohesion}}{W_g}$$

$$ff_c = \alpha (Bo_g)^{-\beta}$$

$$SEP = \sqrt{\frac{\Sigma (Y-Y')^2}{N}}$$

Where, A – Hamaker constant d_p - particle diameter d_{asp} - asperity diameter H_0 - separation distance z_0 - equilibrium separation distance γ_d - surface energy D_0 - cut-off distance W_g - particle weight

 α , β for Hard wheat flours – 53.68, 0.43 for Soft wheat flours – 63.38, 0.45

Results

	Bog	FF (Predicted)	FF (Experimental)	SEP
HRW (< 45 μm)	7.23 x 10 ⁻³	1.21	1.26 (0.04)	0.04
H 45 - 75 μm	7.41 x 10 ⁻²	2.94	2.98 (0.03)	0.08
Η 75 - 106 μm	1.80 x 10 ⁻²	6.01	5.96 (0.16)	0.10
SRW (< 45 μm)	7.18 x 10 ⁻³	1.17	1.21 (0.02)	0.06
S 45 - 75 μm	7.95 x 10 ⁻²	2.86	2.92 (0.07)	0.04
S 75 - 106 µm	2.18 x 10 ⁻²	5.81	5.72 (0.09)	0.10

* Values in parenthesis indicate standard deviation.

Flow function coefficients predicted using developed model for ternary mixtures of HRW samples

Flow function coefficients predicted using developed model for ternary mixtures of SRW samples

Predicting Flow: Conclusions

- The GBN model quantifies inter-particle cohesion and correlates well with the FF.
- The GBN model predicted the flow behavior of powders at particular particle size with SEP of 0.05 for HRW and SRW wheat powders.
- The GBN model was extended to multi-component mixtures (powder with different particle sizes) and was successfully predicted the FF.
- Anticipated applications include:
 - Corrective actions to increase or decrease sieving time
 - Change in sifter settings

DEM Modeling of Sieving Process

- Development of discrete element method (DEM) model for sifting flour
 - Numerical modeling technique.
 - Based on principles of Newton's second law of motion and forcedisplacement laws.
 - Particles representing material in behavior and characteristics are created based on the physical and mechanical properties.
 - Model follows motion and interactions of each particle and predicts their motion.

Model Development

View of screen

Sieve stack geometry

- Defining particle cohesion
 - Hertz-Mindlin with Johnson-Kendall-Roberts Model

$$- f_{JKR} = -4 \sqrt{\pi \gamma E^*} a^{\frac{3}{2}} + \frac{4E^*}{3R^*} a^3$$
$$- \delta = \frac{a^2}{R^*} - \sqrt{\frac{4\pi \gamma a}{E^*}}$$
$$- P_{JKR} = -\frac{3}{2} \pi \gamma R^*$$

- Where, δ normal overlap γ – surface energy f_{JKR} - cohesion force E^* - equivalent Young's modulus a – contact radius P_{JKR} - pull-off force R^* - equivalent radius
- Measure of accuracy of prediction

$$SEP = \sqrt{\frac{\sum(Y-Y')^2}{N}}$$

Where, SEP – standard error of prediction

- Y experimental value
- Y' predicted value
- N number of observations

Parameters used in model development and validation

Parameter	Model	Validation
Sieve cloth	Poly amide	\checkmark
Weaving pattern	XX	\checkmark
Sieve height, mm	25.4	\checkmark
Sieve area [*] , mm ²	11.22	11.22×10^{4}
Quantity of flour used, gm	0.01	100
Motion of the sieve stack	Circulatory, with diameter of	\checkmark
	10.5 cm	
Frequency of the sieve stack,	180	\checkmark
rpm		
Time interval for flour	5, 10, 15, and 20 sec	
collection		

(Source: Prof Zworykin, Russian miller, 1911)

Model input parameters

MC, (%wb)	Mean Particle radius (µm)	Density (kg/m ³)	Poisson's ratio*	Shear modulus MPa×	Surface energy (mJ/m²)	Coefficient of static friction ^a	Coefficient of rolling friction ^a
	HRW						
10	72	1485	0.2	76.5	0.33	0.43	0.50
14	78	1473	0.2	76.5	0.32	0.43	0.55
	SRW						
12	47	1491	0.2	76.5	0.27	0.44	0.39
Sieve	Sieve cloth, PA						
		1140	0.41	760			

^a Values from Patwa et al. (2015); *Weigler et al., (2012); *Markasaus et al., (2012)

Ì

Results

Simulation Results - HRW Vs SRW @ 10% m.c at 20 sec

Simulation Results - HRW 10% m.c Vs 14% m.c at 20 sec

Particle size distribution of HRW at 10% m.c.

	Sieving Time								
Screen	At 5 S		At 10 S		At 15 S		At 20 S		
microns	MOD	ЕХР	MOD	ЕХР	MOD	ЕХР	MOD	ЕХР	SEP
125	78.38	84.70 (0.62)	74.21	78.45 (0.29)	70.19	76.37 (0.12)	70.19	75.88 (0.02)	9.27
112	7.49	10.59 (0.70)	11.26	13.08 (0.18)	15.21	12.77 (0.06)	15.19	10.93 ((0.24)	3.65
95	5.87	3.19 (0.06)	6.00	4.50 (0.45)	5.92	4.65 (0.01)	5.94	5.74 (0.13)	1.68
75	3.16	0.93 (0.02)	3.27	2.04 (0.13)	3.29	2.91 (0.04)	3.26	3.02 (0.08)	1.29
63	3.92	0.45 (0.07)	4.03	1.55 (0.36)	4.14	1.95 (0.08)	4.16	3.04 (0.16)	2.48
Pan	1.16	0.15 (0.07)	1.23	0.40 (0.12)	1.26	1.36 (0.18)	1.26	1.40 (0.11)	0.67

Segregation of HRW flour at 10% m.c at t = 0.1 sec

At time t = 0.2 sec

At time t = 5 sec

Collection pan

Measure of Accuracy Model (SEP)

Screen, microns	HRW at 10% m.c	HRW at 14% m.c	SRW at 10% m.c
125	9.27	3.55	4.61
112	3.65	5.75	5.28
95	1.68	2.22	0.59
75	1.29	1.85	0.37
63	2.48	1.97	0.34
Pan	0.67	0.75	0.13

Sieve Blinding or Agglomeration									
Time	15 sec to 20 sec	10 sec to 15 sec	10 sec to 15 sec						
Mass retained		12% > HRW at 10% m.c	8% > HRW at 10% m.c						

Sieve blinding over 125 µm screen

DEM Modeling: Conclusions

- The developed model is helpful in predicting the <u>particle</u> <u>size distribution</u> on each sieve.
- Prediction of sieve blinding time:
 - HRW @ 10% m.c 15.25 s
 - HRW @ 14% m.c 10.50 s
 - SRW @ 10% m.c 10.25 s
- Mass retained over 125µm sieve
 - For HRW 14% mc is 12% > HRW at 10% m.c
 - For SRW 10% mc is 8% > HRW at 10% m.c
- Based on the predicted sieve blinding times <u>corrective</u> <u>actions</u> like:
 - Modification of sieving time can be done

Acknowledgements

- Dr. Kingsly Ambrose, Co-Major Advisor
- Dr. Praveen Vadlani, Co-Major Advisor
- Dissertation committee members
- Collaborators Dr. Jin, Grace, Dr. Djanaguiraman, Qisong
- Edwin Brokesh, Dr. Alavi
- EDEM and BEOCAT technical support team
- Research group members

Thank you

