Predicting the Wheat Flour Size Segregation Process From Particle Properties

KALIRAMESH SILIVERU

Research Associate
Dept. of BAE / USDA - ARS
Contact: kaliramesh@ksu.edu

Introduction

- Majority of wheat is converted into flour
- Color, genetics, hardness, and growing season - 6 classes

Mill flow sheet

(Roller mill flow sheet, SH 101)

Sieving Process

- Three important particle motions (Nicholas et al., 1969):
- Filtration of fines through the matrix of powder on the mesh
- Free passage of particles through the mesh
- Interrupted passage or blinding of particles in the mesh
- Loss in throughput is observed when sieving soft wheat flour compared to that of hard wheat flour (Neel and Hoseney, 1984).
- Particle size of wheat flour affects its physicochemical properties (Wang and Flores, 2000).

Hard wheat Flour

Soft wheat Flour

(Source: U. S. Wheat Associates, 2011)

Sieving Process

(Source: Roberts and Beddow, 1968)

Kansas State

UNIVERSITY

Flour Cohesion

approaching

further cohesion

bridge rupture

Flour cohesion depends on:
a) Physical
b) Chemical
c) Surface Properties

Research hypothesis: Flour particle characteristics affects the sifting behavior of wheat flour.

Research Objectives

- Objective: 1 - Determination of surface physical and chemical characteristics of hard and soft wheat flours.
- Objective: 2 - Determination the significance of physical and chemical characteristics on the bulk cohesion of wheat flours.
- Objective: $\mathbf{3}$ - Develop a correlation to predict the flow behavior of wheat flours.
- Objective: 4 - Develop and validate of discrete element method (DEM) model to describe the wheat flour sieving process.

Surface Characteristics

- Determination of surface physical and chemical characteristics of hard and soft wheat flour particles.
- Surface lipid content
- Shape factor
- Surface roughness

Materials

Flour from:

- Hard red winter wheat
- Soft red winter wheat

45,75 , and $90 \mu \mathrm{~m}$ particle size

- Lab scale milling - AACC method (26-21.02; 26-31.01)
(Particle size selection : Neel and Hoseney, 1984)

Methods

Property	Test
Surface lipid	Surface staining - Sudan IV dye, and Ethylene glycol (Chiffelle and Putt, 1951) $>0.35 \mathrm{~g}$ dye $/ 100 \mathrm{ml}$ ethylene glycol $>$ Program written in MATLAB
Shape factors $>$ Form factor; Roundness $>$ Aspect ratio; Compactness	Scanning Electron Microscopy images $\times 500$ magnification $>$ Shape descriptors plug in (V 1.48) in ImageJ
Surface roughness	Atomic force microscopy $>R_{q}=\frac{1}{N} \sqrt{\sum_{i=1}^{N}\left(Z_{i}-Z_{\text {ave }}\right)^{2}}$

Surface Lipid Composition

Surface lipid composition

** Values with same letters on a column are not significantly different for a particular size by least significant difference (LSD) comparison of means. $(\alpha=0.05)$

Kansas State

Shape Factor

- Shape factor - Shape descriptors plug in (V 1.48) in ImageJ
- Shape descriptors - form factor, roundness, aspect ratio, and compactness

Interlocking in circular and irregular particles

Shape Factor

Range of values of shape factors from the regular shapes.

Kansas State

Shape Descriptors

Measured Shape Descriptors values

3D topography of HRW $90 \mu \mathrm{~m}$ and SRW $90 \mu \mathrm{~m}$ particles. Scan size $5 \times 5 \mu \mathrm{~m}$ and scan rate of 1-2 Hz.

Number of Areas having RMS Surface Roughness in Various

Surface characteristics: Conclusions

- The surface lipid composition and roughness were higher in soft wheat flours.
- The breakage behavior of flour components (protein and starch) influenced the overall shape and surface roughness of wheat flour.
- The irregular shape of the particle causes inter-locking behaviour between particles which could affect flour movement during sieving.
- The differences in surface characteristics could lead to agglomeration of flour particles that could affect the sieving process and also affects the product quality and uniformity.

Bulk Cohesion Method

FT4-Powder rheometer

Shear cell measurement

Results

Sample	Cohesion, kPa		
	0.5 kPa	1.0 kPa	1.5 kPa
HRW ($<\mathbf{4 5 ~ \mu m) ~}$	$0.25 \pm 0.01^{\text {Bc }}$	$0.39 \pm 0.01^{\text {Ab }}$	$0.74 \pm 0.02^{\text {Aa }}$
H 45-75 $\mu \mathrm{m}$	$0.11 \pm 0.01^{\text {Cb }}$	$0.12 \pm 0.01^{\text {Bb }}$	$0.25 \pm 0.01^{\text {Ca }}$
H 75-106 $\boldsymbol{\mu} \mathrm{m}$	$0.06 \pm 0.01^{\mathrm{Ec}}$	$0.16 \pm 0.01^{\text {Bb }}$	$0.21 \pm 0.02^{\mathrm{Ca}}$
SRW (< $\mathbf{4 5} \boldsymbol{\mu \mathrm { m }}$)	$0.32 \pm 0.01^{\text {Ac }}$	$0.43 \pm 0.02^{\text {Ab }}$	$0.73 \pm 0.06^{\text {Aa }}$
S 45-75 $\boldsymbol{\mu} \mathrm{m}$	$0.08 \pm 0.002^{\text {Dc }}$	$0.14 \pm 0.03^{\text {Bb }}$	$0.29 \pm 0.02^{\text {Ba }}$
S 75-106 $\mu \mathrm{m}$	$0.06 \pm 0.001{ }^{\mathrm{Ec}}$	$0.10 \pm 0.002^{\text {Cb }}$	$0.18 \pm 0.01^{\text {Da }}$

** Values with same upper case letters in a column are not significantly different for different particle sizes; Values with same lower case letters in a row are not significantly different for a particular size by least significant difference (LSD) comparison of means. $(\alpha=0.05)$

Kansas State

Sample	Flow Function (FF)			If $\mathbf{F F}$ is <1: Hardened
	0.5 kPa	1.0 kPa	1.5 kPa	
HRW ($<\mathbf{4 5} \mu \mathrm{m}$)	$1.07 \pm 0.01{ }^{\text {Eb }}$	$1.13 \pm 0.15^{\text {Db }}$	$1.11 \pm 0.09 \mathrm{Ca}$	
H 45-75 $\mu \mathrm{m}$	$2.47 \pm 0.23 \mathrm{Cc}$	$3.26 \pm 0.10^{\text {Cb }}$	$4.18 \pm 0.30^{\mathrm{Ba}}$	1-2 : Very Cohesive
H 75-106 $\mu \mathrm{m}$	$4.45 \pm 0.29^{\text {Aa }}$	$4.62 \pm 0.24^{\text {Aa }}$	$5.14 \pm 0.20^{\text {Aa }}$	4-10: Easy flowing
SRW (< $45 \mu \mathrm{~m}$)	$1.18 \pm 0.02^{\mathrm{Da}}$	$1.09 \pm 0.04{ }^{\text {Da }}$	$1.32 \pm 0.04{ }^{\text {Da }}$	
S 45-75 $\boldsymbol{\mu m}$	$2.93 \pm 0.15^{\mathrm{Bb}}$	$3.13 \pm 0.04{ }^{\text {cb }}$	$3.73 \pm 0.27^{\mathrm{Ba}}$	2004
S 75-106 $\boldsymbol{\mu m}$	$3.03 \pm 0.45^{\text {Bb }}$	$3.34 \pm 0.04{ }^{\text {Bb }}$	$3.74 \pm 0.17^{\mathrm{Ba}}$	

** Values with same upper case letters in a column are not significantly different for different particle sizes; Values with same lower case letters in a row are not significantly different for a particular size by least significant difference (LSD)
comparison of means. ($\alpha=0.05$)

Kansas State

UNIVERSITY

	Cohesion	Flow Function	AIF
Moisture content	$0.98^{* *}$	$-0.98^{* *}$	ns
Particle size	$-0.92^{* *}$	$0.96^{* *}$	-0.94
Sifter load	$0.99^{* *}$	$-0.95^{* *}$	-0.83
Damaged starch	$0.92^{* *}$	$-0.82^{* *}$	ns
Protein	-0.91^{*} (Hard)	$-0.84^{*}($ Hard $)$	ns
Crude fat	$-0.63^{* *}$ (Hoft)	0.91^{*} (Soft)	
	$0.92^{*}($ Soft $)$	$0.74^{* *}$ (Hard)	ns

${ }^{* *},{ }^{*}$ Indicate significance at $P<0.01$ and $P<0.05$, respectively; ns, not significant.

Kansas State

Bulk cohesion: Conclusions

- High correlation between the physical independent variables (MC, PS, SL), chemical composition (damaged starch, protein, and fat) and the flow properties (cohesion, flow function, and AIF).

Moisture: 12\% (w.b)
Particle size: $<\mathbf{4 5} \mu \mathrm{m}$
Sifter load: $\mathbf{1 . 0} \mathbf{~ k P a}$

Predicting Flow Behavior

- Development of granular bond number (GBN) model for predicting flow behavior of wheat flours.
- Hard red winter flour
- Soft red winter flour
$\left\{\begin{array}{l}\text { Size range } \\ \text { a. } 75-106 \mu \mathrm{~m} \\ \text { b. } 45-75 \mu \mathrm{~m} \\ \text { c. }<45 \mu \mathrm{~m}\end{array}\right.$

Moisture content: 12 \% (w.b)
Applied pressure: 1.0 kPa

Methods

Property	Test
Particle characteristics	Morphologi G3-ID morphologically directed Raman
$>d_{p}$ - particle diameter	system (Malvern Instruments, Worcestershire, UK)
$>d_{\text {asp }}$ - asperity diameter	$>$ Dry dispersion 0.5 bar
$>d_{32}$ - Sauter mean diameter	>125 images
Surface energy	Inverse gas chromatography (IGC-SEA, Surface
	Measurement Systems, London, U.K.)
	$>A=24 \pi D_{0}^{2} \gamma_{d}$ (Israelachvili, 1992)
Flour blend preparation	Lab scale rotary mixer
	>20 min; 60 rpm;100 g of flour
	$>33.3 / 33.3 / 33.3$
	$>16.6 / 41.7 / 41.7$
	$>41.7 / 16.6 / 41.7$
	$>41.7 / 41.7 / 16.6$

Model Development

- Cohesive force

$$
\begin{aligned}
& >F_{\text {cohesion }}=\frac{A}{12 z_{0}^{2}}\left(\frac{d_{p}}{2\left(^{H_{0}} / z_{0}\right)^{2}}+\frac{3 d_{\text {asp }} d_{p}}{d_{\text {asp }}+d_{p}}\right) \\
& >A=24 \pi D_{0}^{2} \gamma_{d}
\end{aligned}
$$

- Granular Bond number $\left(B o_{g}\right)$

$$
\begin{aligned}
& >B o_{g}=\frac{F_{\text {cohesion }}}{W_{g}} \\
& >f f_{c}=\alpha\left(B o_{g}\right)^{-\beta} \\
& >S E P=\sqrt{\frac{\sum\left(Y-Y^{\prime}\right)^{2}}{N}}
\end{aligned}
$$

Where, A - Hamaker constant d_{p} - particle diameter
$d_{a s p}-$ asperity diameter
H_{0} - separation distance
z_{0} - equilibrium separation distance
γ_{d} - surface energy
D_{0} - cut-off distance
W_{g} - particle weight
α, β for Hard wheat flours $-53.68,0.43$
for Soft wheat flours - 63.38, 0.45

Results

	$\boldsymbol{B o} g_{g}$	FF (Predicted)	$\mathbf{F F}$ (Experimental)	SEP
HRW (< $\mathbf{4 5} \boldsymbol{\mu m}$)	7.23×10^{-3}	1.21	1.26 (0.04)	0.04
H 45-75 $\mu \mathrm{m}$	7.41×10^{-2}	2.94	2.98 (0.03)	0.08
H 75-106 $\mu \mathrm{m}$	1.80×10^{-2}	6.01	5.96 (0.16)	0.10
SRW ($<\mathbf{4 5} \boldsymbol{\mu} \mathrm{m}$)	7.18×10^{-3}	1.17	1.21 (0.02)	0.06
S 45-75 $\boldsymbol{\mu} \mathbf{m}$	7.95×10^{-2}	2.86	2.92 (0.07)	0.04
S 75-106 $\boldsymbol{\mu} \mathbf{m}$	2.18×10^{-2}	5.81	5.72 (0.09)	0.10

*Values in parenthesis indicate standard deviation.

If $\mathbf{F F}$ is
<1: Hardened
1-2 : Very Cohesive
2-4: Cohesive
4-10: Easy flowing >10: Free flowing

Ref: Fitzpatrick et al., 2004

Flow function coefficients predicted using developed model for ternary mixtures of HRW samples

Kansas State

UNIVERSITY

If $\mathbf{F F}$ is

Flow function coefficients predicted using developed model for ternary mixtures of SRW samples

Kansas State

UNIVERSITY

Predicting Flow: Conclusions

- The GBN model quantifies inter-particle cohesion and correlates well with the FF.
- The GBN model predicted the flow behavior of powders at particular particle size with SEP of 0.05 for HRW and SRW wheat powders.
- The GBN model was extended to multi-component mixtures (powder with different particle sizes) and was successfully predicted the FF.
- Anticipated applications include:
- Corrective actions to increase or decrease sieving time
- Change in sifter settings
$\frac{\text { Kansas State }}{\text { U N } 1 V E R S i t y}$
UNIVERSITY

DEM Modeling of Sieving Process

- Development of discrete element method (DEM) model for sifting flour
- Numerical modeling technique.
- Based on principles of Newton's second law of motion and forcedisplacement laws.
- Particles representing material in behavior and characteristics are created based on the physical and mechanical properties.
- Model follows motion and interactions of each particle and predicts their motion.

Model Development

View of screen

Kansas State

EDEM 2.6 (DEM Solutions, Edinburgh, UK)

Kansas Stat

- Defining particle cohesion

- Hertz-Mindlin with Johnson-Kendall-Roberts Model
$-f_{J K R}=-4 \sqrt{\pi \gamma E^{*}} a^{\frac{3}{2}}+\frac{4 E^{*}}{3 R^{*}} a^{3} \quad$ Where, δ - normal overlap
γ - surface energy
$-\delta=\frac{a^{2}}{R^{*}}-\sqrt{4 \pi \gamma a / E^{*}}$
$f_{J K R^{-}}$cohesion force
E^{*} - equivalent Young's modulus
$-P_{J K R}=-\frac{3}{2} \pi \gamma R^{*}$
a - contact radius
$P_{J K R^{-}}$pull-off force
R^{*} - equivalent radius
- Measure of accuracy of prediction

$$
\mathrm{SEP}=\sqrt{\frac{\sum\left(\mathrm{Y}-\mathrm{Y}^{\prime}\right)^{2}}{\mathrm{~N}}}
$$

Where, SEP - standard error of prediction
Y - experimental value
Y^{\prime} - predicted value
N - number of observations

Parameters used in model development and validation

Parameter	Model	Validation
Sieve cloth	Poly amide	$\sqrt{ }$
Weaving pattern	XX	$\sqrt{ }$
Sieve height, mm	25.4	$\sqrt{ }$
Sieve area*, mm^{2}	11.22	11.22×10^{4}
Quantity of flour used, gm	0.01	Circulatory, with diameter of 10.5 cm
Motion of the sieve stack $\alpha \mathrm{V}$		
Frequency of the sieve stack,	180	
rpm	$5,10,15$, and 20 sec	$\sqrt{ }$
Time interval for flour collection		

Model input parameters

$\begin{gathered} M C, \\ (\% w b) \end{gathered}$	Mean Particle radius ($\mu \mathrm{m}$)	Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Poisson's ratio*	Shear modulus $M P a^{\times}$	Surface energy $\left(\mathrm{mJ} / \mathrm{m}^{2}\right)$	Coefficient of static friction ${ }^{a}$	Coefficient of rolling friction ${ }^{a}$
HRW							
10	72	1485	0.2	76.5	0.33	0.43	0.50
14	78	1473	0.2	76.5	0.32	0.43	0.55
SRW							
12	47	1491	0.2	76.5	0.27	0.44	0.39
Sieve cloth, PA							
		1140	0.41	760			

${ }^{\text {a }}$ Values from Patwa et al. (2015); *Weigler et al., (2012); ${ }^{\times}$Markasaus et al., (2012)

Kansas State

Kansas State
UNIVERSITY

"EDEMAcademic

Kansas State

Results

Simulation Results - HRW Vs SRW @ 10\% m.c at 20 sec

Kansas State

Simulation Results - HRW 10\% m.c Vs $\mathbf{1 4 \%}$ m.c at 20 sec

Kansas State

Particle size distribution of HRW at 10% m.c.

	Sieving Time								SEP
Screen microns	At 5 S		At 10 S		At 15 S		At 20 S		
	MOD	EXP	MOD	EXP	MOD	EXP	MOD	EXP	
125	78.38	84.70 (0.62)	74.21	78.45 (0.29)	0.19	76.37 (0.12)	0.1	75.88 (0.02)	9.27
112	7.49	10.59 (0.70)	11.26	13.08 (0.18)	15.21	12.77 (0.06)	15.19	10.93 ((0.24)	3.65
95	5.87	3.19 (0.06)	6.00	4.50 (0.45)	5.92	4.65 (0.01)	5.94	5.74 (0.13)	1.68
75	3.16	0.93 (0.02)	3.27	2.04 (0.13)	3.29	2.91 (0.04)	3.26	3.02 (0.08)	1.29
63	3.92	0.45 (0.07)	4.03	1.55 (0.36)	4.14	1.95 (0.08)	4.16	3.04 (0.16)	2.48
Pan	1.16	0.15 (0.07)	1.23	0.40 (0.12)	1.26	1.36 (0.18)	1.26	1.40 (0.11)	0.67

Kansas State

Segregation of HRW flour at 10% m.c at $\mathbf{t}=0.1$ sec

Kansas State

At time $\mathrm{t}=0.2 \mathrm{sec}$

\downarrow

At time $\mathrm{t}=5 \mathrm{sec}$

Collection pan

Kansas State

UNIVERSITY

Measure of Accuracy Model (SEP)

Screen, microns	HRW at 10% m.c	HRW at 14\% m.c	SRW at 10% m.c
$\mathbf{1 2 5}$	9.27	3.55	4.61
$\mathbf{1 1 2}$	3.65	5.75	5.28
$\mathbf{9 5}$	1.68	2.22	0.59
$\mathbf{7 5}$	1.29	1.85	0.37
$\mathbf{6 3}$	2.48	1.97	0.34
Pan	0.67	0.75	0.13

Sieve Blinding or Agglomeration			
Time	15 sec to 20 sec	10 sec to 15 sec	10 sec to 15 sec
Mass retained		$12 \%>$ HRW at $10 \% \mathrm{~m} . \mathrm{c}$	$8 \%>$ HRW at $10 \% \mathrm{~m} . \mathrm{c}$

Kansas State

UNIVERSITY

Kansas State

DEM Modeling: Conclusions

- The developed model is helpful in predicting the particle size distribution on each sieve.
- Prediction of sieve blinding time:
- HRW @ 10% m.c- 15.25 s
- HRW @ 14% m.c-10.50 s
- SRW @ 10% m.c - 10.25 s
- Mass retained over $125 \mu \mathrm{~m}$ sieve
- For HRW $14 \% \mathrm{mc}$ is $12 \%>$ HRW at 10% m.c
- For SRW $10 \% \mathrm{mc}$ is $8 \%>$ HRW at 10% m.c
- Based on the predicted sieve blinding times corrective actions like:
- Modification of sieving time can be done

Kansas State
UNIVERSITY

Acknowledgements

- Dr. Kingsly Ambrose, Co-Major Advisor
- Dr. Praveen Vadlani, Co-Major Advisor
- Dissertation committee members
- Collaborators - Dr. Jin, Grace, Dr. Djanaguiraman, Qisong
- Edwin Brokesh, Dr. Alavi
- EDEM and BEOCAT technical support team
- Research group members

Thank you

Kansas State

