

MSc ENZO GALLUZZO FRANZESE

BIO Enzo Galluzzo Franzese

- 1+33 años en la Industria Molinera en importantes posiciones
- + 29 años como profesor de ESLAMO
- +10 años como Speaker/Orador del Workshop de apertura IAOM Latinoamerica
- + 20 años como Speaker/Orador Internacional en diferentes eventos
- + 5.000 alumnos a todo largo de Latinoamérica
- Intercambios tecnológicos y formación en el área de molinería en diversos países
 Suiza, Italia, Alemania, Canadá y EEUU.
- Ganador del del Premio ARLIN B. WARD de la IAOM: Excellence in Milling
 Education 2023
- Estudios formales en Ingeniería, Administración, MBA e Investigación de Operaciones.

ARLIN B. WARD
COMMENDATION FOR EXCELLENCE IN
MILLING EDUCATION

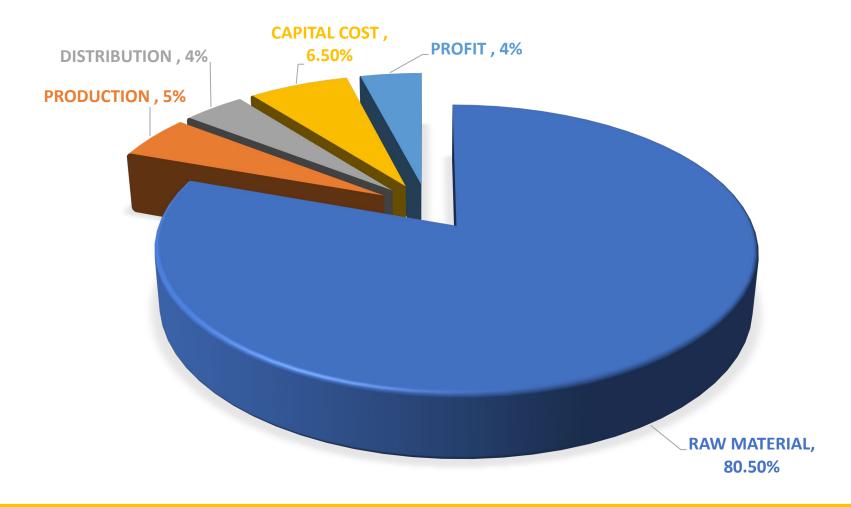
Presented to

Enzo Galluzzo

IN RECOGNITION OF HIS
LEADERSHIP AND CONTRIBUTIONS
TO MILLING EDUCATION IN
THE LATIN AMERICA REGION

APRIL 20, 2023 MINNEAPOLIS, MINNESOTA, USA

ASPECTOS DE RELEVANCIA A CONSIDERAR EN EL PROCESO DE MOLIENDA POR SU IMPACTO EN LOS PRODUCTOS DE PANADERIA


- Descripción general y perspectivas del mercado mundial de trigo.
- Características de los diagramas de molienda según cada tipo de trigo: Casos de estudio para comprender el impacto.
- Acondicionamiento del trigo: casos de estudio que evidencian el impacto en la extracción de harinas y en los productos terminados.
- Cómo interpretar resultados físicos, químicos y reológicos de diferentes tipos de harina y su impacto en los productos finales.
- Impacto de la rugosidad de los cilindros lisos y el desgaste de las estrías en los cilindros corrugados; Casos de estudio para comprender el impacto en la extracción de harinas y la calidad de los productos finales.

Descripción General del Mercado Mundial de Trigo.

MSc ENZO GALLUZZO FRANZESE

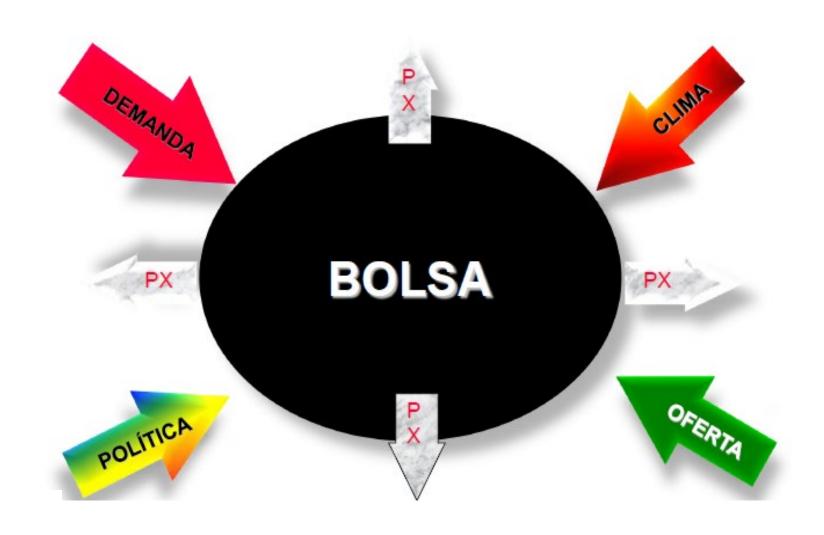
La Estructura de Costos actual de forma general de un Molino de Harina de Trigo es la siguiente (Latinoamerica):

Dos (2) puntos de extracción generarían ahorros casi para cubrir los costos del personal de producción

Los commodities como el trigo se cotizan en bolsas...

Bolsas y Productos

- CME (Chicago Mercantile Exchange):
 - Maíz, Soja, Trigos SRW y HRW, Harina de Soja, Aceite de Soja
 - Energéticos (Petróleo, Gas Natural, etc.)
 - Ganado Bovino (Flaco y Gordo), Cerdo en canal, Peso mexicano
- MGE (Minneapolis Grain Exchange)
 - Minneapolis: Trigos de primavera
- ICE (Inter Continental Exchange)
 - Softs (Azúcar, Cacao, Zúmo de Naranja, etc.)
- NYSE (New York Stock Exchange)-Euronext (MATIF)
 - Trigo harinero
 - Maíz



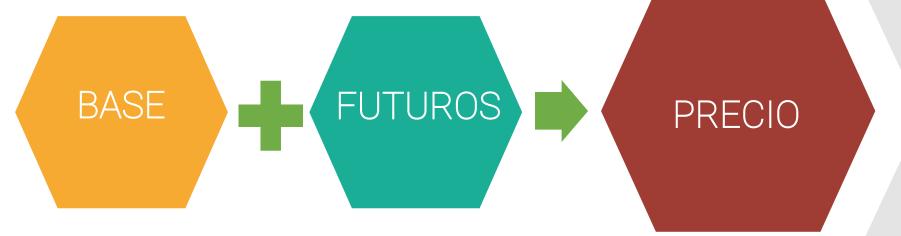
Los aspectos con incidencia en el precio en bolsa o de los futuros

Especificaciones de compra diferentes para trigos originados en EEUU y Canadá

Espe	cificación de Contrato – Trigo Duro de Invierno (Trigo Kansas)	
Tamaño de contrato	5,000 bushels – 136 TM	
Calidad de Entrega	Trigo Duro de Invierno USDA No. 2	
Fluctuación Mínima – Tick	¼ de centavo por bushel (\$12.50 por contrato)	
Se cotiza en:	Centavos por bushel Centavos por bushel x 0.367437 = Dólares por TM 1 Bushel= 27.21 Kg	
Meses de Cotización	Marzo, Mayo, Julio, Septiembre, Diciembre – H,K,N,U,Z	
Ultimo día de cotización	El día hábil anterior al 15 del mes de cotización.	
Ultimo dia de entrega	El segundo día hábil siguiente al ultimo día de cotización.	
Horas de cotización	Electrónico: domingo – Viernes de 7:00 pm – 7:45 am y de 8:30 a 1:20pm (lunes a viernes)	
	Los contratos a expiración, dejan de cotizar a las 12:00 pm del ultimo día de cotización.	
Símbolos	ZW	
Precio Limite Diario	30 ctvs. por bushel (\$1,500 por contrato) arriba o abajo del precios del cierre del día previo de cotización. No hay limites en el mes "spot" – Cuando el mes cercano entra en periodo de entrega.	

Trigo del Mar Negro presenta especificaciones de compra diferentes a los de origen como EEUU y Canadá

The water the way			
Tamaño de contrato	50 TM		
Fluctuación Mínima -Tick	0,25 dólares por tonelada métrica		
Se cotiza en	Dólares y centavos de dólar por tonelada métrica		
Meses de Cotización	Todos los meses – F, G, H, J, K, M, N, Q, U, U, X, Z- spot + 14 meses		
Último día de Cotización	Las cotizaciones finalizan el último día laboral del mes del contrato, que también es una fecha de publicación de Platts para la evaluación de precios.		
Horas de cotización	Domingo – Viernes 5:00 p.m. – 4:00 p.m. hora de Chicago/ CT con un descanso diario de 60 minutos que empieza a las 4:00 p.m. CT		
Símbolos	BWF para el mes entero, BWH para los futuros de medio mes		
Establecimiento de precios	BWF: El precio de cada contrato es igual a la media aritmética del trigo FOB Mar Negro (Rusia 12,5%) publicado por Platts para cada día del mes del contrato. BWH: El período para establecer el precio del contrato de la primera mitad del mes, va desde el primer día del calendario hasta el día 15 del calendario (inclusive). Para la segunda mitad se coge desde el día 16 del calendario al último día del calendario del mes del contrato. Se basa en cargas de 28 a 42 días vía FOB Novorossiysk (Rusia) de 12,5% proteína, para cantidades entre 25 y 60 mil tm.		
Calidad	El precio se redondea al 0,01 usd más cercano. Peso mínimo de 77 kg/hl, humedad máxima de 14%, % mínimo de gluten húmedo de 25%, W mínimo de 80, índice caída de Hagberg de 250 segundos, daño máximo por plaga del 1,5% y máximo de otros residuos en 2%.		


- ¿Qué es un bushel?
 - Un bushel es una cubeta o balde

- Equivale a
 - 1 bushel de maíz = 56 lb = 25.40 kg
 - 1 bushel trigo o Frijol de Soya = 60 lb = 27.22 kg
 - 1 bushel cebada = 48 lb = 21.77 kg

El valor final de un commodity será la suma del valor de la base y el valor del futuro.

En un sentido muy básico, un commodity es un material tangible que se puede comerciar, comprar o vender. Normalmente se utilizan como insumos en la fabricación de otros productos más refinados.

La bolsa de granos nos muestra el valor de los futuros de los commodities

Printer Friendly Symbol Description Active Commodities Futures Window Wheat-CBOT (Composite) (QBW) Corn (Composite) (QBC) Soybeans (Composite) (QBS) LAST CHG HIGH LOW LAST CHG HIGH LOW LAST CHG HIGH LOW 731'2 951'0 730'0 32'4 699'6 1706'2 1706'4 1648'2 977'0 49'0 977'0 Mar 22 Mar 22 Mar 22 721'6 31'0 724'4 692'6 1692'0 55'2 1695'6 1641'4 932'2 May 22 May 22 May 22 982'6 48'6 984'0 Jul 22 703'4 26'4 707'4 677'2 1666'4 1670'2 1621'0 960'2 43'2 964'6 915'0 Wheat-KCBOT (Electronic) (KE) Wheat-MGE (Electronic) (MWE) Rapeseed (Canola) (RS-WC) LOW LOW LAST CHG HIGH LAST CHG HIGH LAST LOW CHG HIGH 979'2 29'2 983'4 983'4 979'2 -9'6 979'2 1033.0 Mar 22 Mar 22 Mar 22 1000'2 1003'0 9512 May 22 1025'6 1028'6 986'4 1068.5 35.8 1069.7 1033.0 May 22 May 22 782'V Jul 22 988'2 938'4 1021'0 34'2 1023'6 979'4 1036.8 27.01039.0 1011.3 Jul 22 Jul 22 Soybean Oil (Composite) (QBO) Oats (Composite) (QZO) Soybean Meal (Composite) (QSM) LAST CHG HIGH LOW LAST CHG HIGH LOW LAST CHG HIGH LOW Mar 22 465.6 10.7 465.6 457.4 Mar 22 76.82 3.93 76.90 73.72 Mar 22 700'0 700'0 700'0 457.3 11.0 457.3 448.0 75.90 3.38 76.41 72.70 663'0 22'0 681'0 638'0 May 22 May 22 May 22

10 Minute Delayed Futures Snapshot on 3/1/2022 8:06:42 AM Central Time

2.95

74.20

71.00

Jul 22

598'0

28'4

608'4

580'0

444.1

Jul 22

73.74

453.0

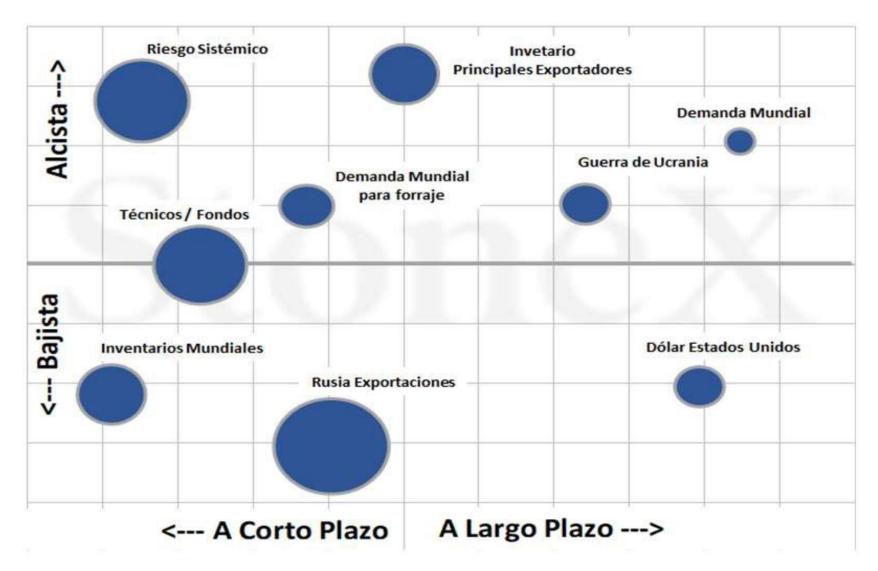
453.0

Jul 22

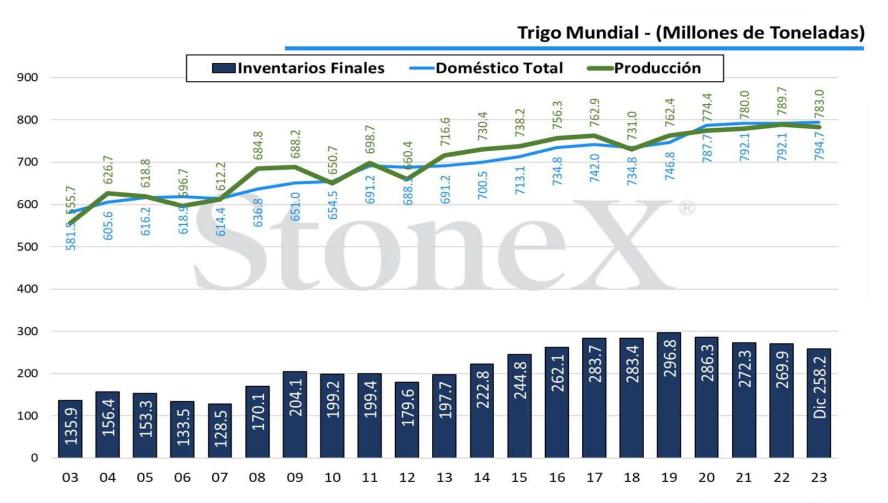
El valor final de un commodities será la suma del valor de la base y el valor del futuro.

En un sentido muy básico, un commodity es un material tangible que se puede comerciar, comprar o vender. Normalmente se utilizan como insumos en la fabricación de otros productos más refinados.

La bolsa de granos nos muestra el valor de los futuros de los commodities


Composite Futures Reload Help Futures Select Commodity View Printer Friendly Symbol Description Active Commodities **Futures Window** Soybeans (Composite) (QBS) Wheat-CBOT (Composite) (QBW) Corn (Composite) (QBC) LAST CHG HIGH LOW LAST CHG HIGH LOW LAST CHG HIGH LOW 645'4 1'0 645'4 644'2 Mar 23 1541'0 Mar 23 682'4 Mar 23 0.0 638'6 637'0 636'4 1528'2 696"2 May 23 May 23 -0'61531'0 1526'2 May 23 1'0 700'6 695'0 627'0 625'4 625'6 Jul 23 1517'0 1519'4 1515'0 Jul 23 705'0 708'6 703'4 **Jul 23** Wheat-KCBOT (Electronic) (KE) Wheat-MGE (Electronic) (MWE) Rapeseed (Canola) (RS-WC) LAST CHG HIGH LOW LAST CHG HIGH LOW LAST CHG HIGH LOW 846.8 Mar 23 Mar 23 858'4 Mar 23 adition. 801'2 3'4 799'0 May 23 862'0 861'4 819.1 May 23 803'2 -0'6863'0 May 23 822.0 819.0 792'6 859'4 7950 797'0 Jul 23 860'0 858'2 Jul 23 813.0 817.1 813.0 Oats (Composite) (QZO) Soybean Meal (Composite) (QSM) Soybean Oil (Composite) (QBO) CHG HIGH LOW LAST CHG HIGH LOW LAST CHG HIGH LAST LOW 510.5 510.8 507.9 59.55 -0.3359.55 59.54 321'2 Mar 23 Mar 23 Mar 23 498.0 60.13 May 23 495.9 493.0 May 23 -0.3260.59 60.01 May 23 324'2 -0'6327'0 324'2 484.9 486.9 482.4 59.88 60.31 59.77 328'0 **Jul 23 Jul 23** -0.30**Jul 23**

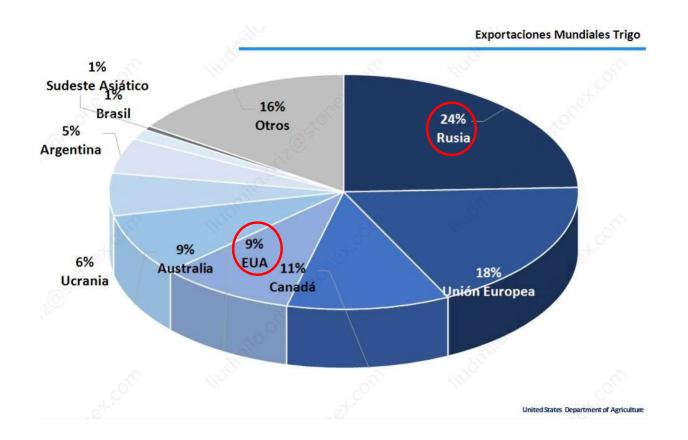
10 Minute Delayed Futures Snapshot on 3/7/2023 6:26:49 AM Central Time

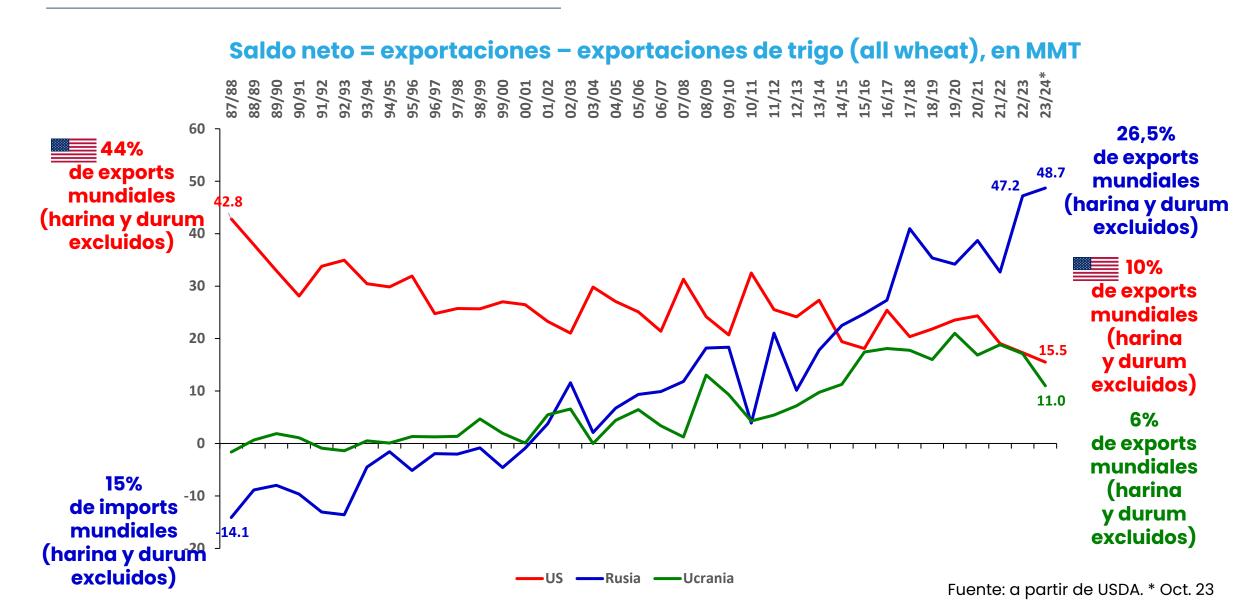

El valor final de un commodities será la suma del valor de la base y el valor del futuro.

Factores que impactan en la actualidad los mercados de trigo

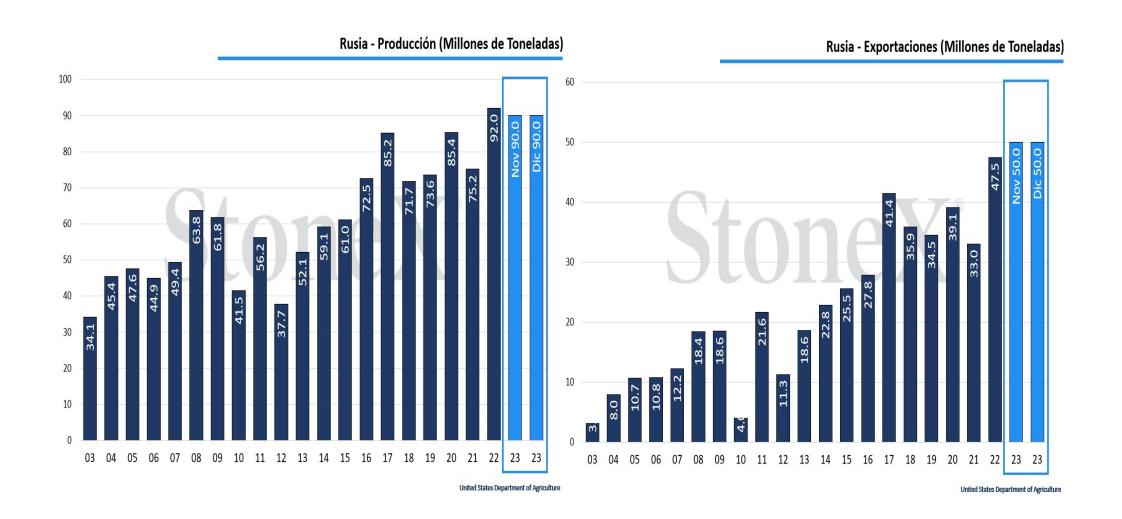
Producción, consumo e inventarios mundiales

Principales exportadores de trigo



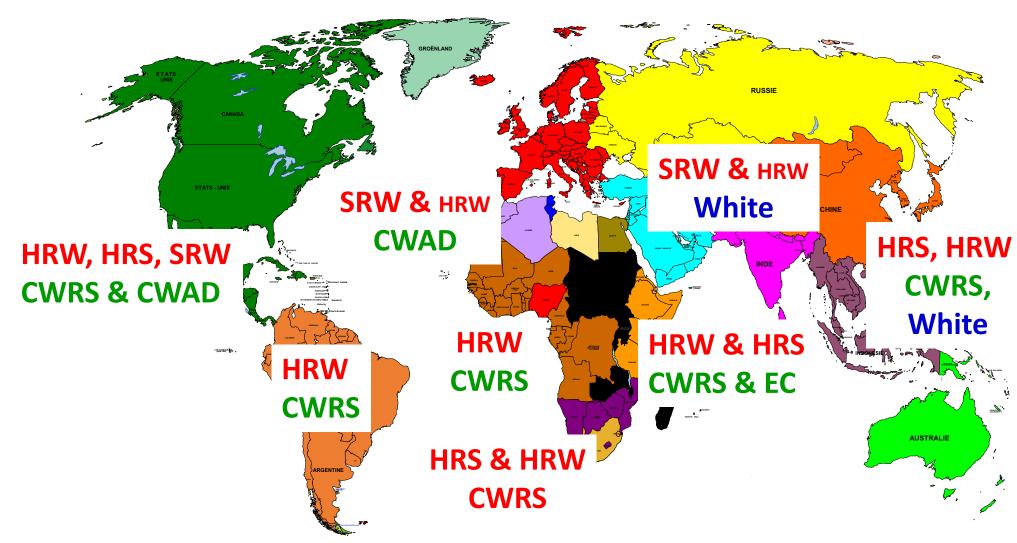


Principales exportadores de trigo



La oferta exportable sigue históricamente concentrada

Pero ha cambiado de manos = driver fundamental del mkt de hoy



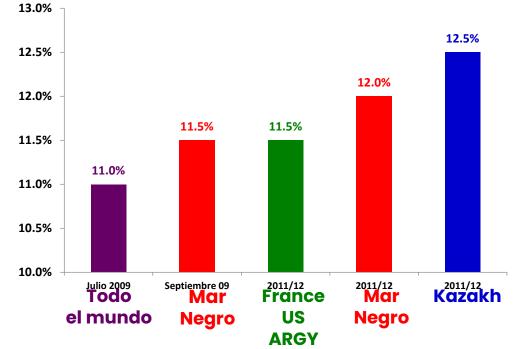
Rusia - Producción y exportaciones

Configuración del mercado antes de la llegada de Rusia

La customización Canadá/Australia y US ("a granel")

Configuración del mercado después de la llegada de Rusia

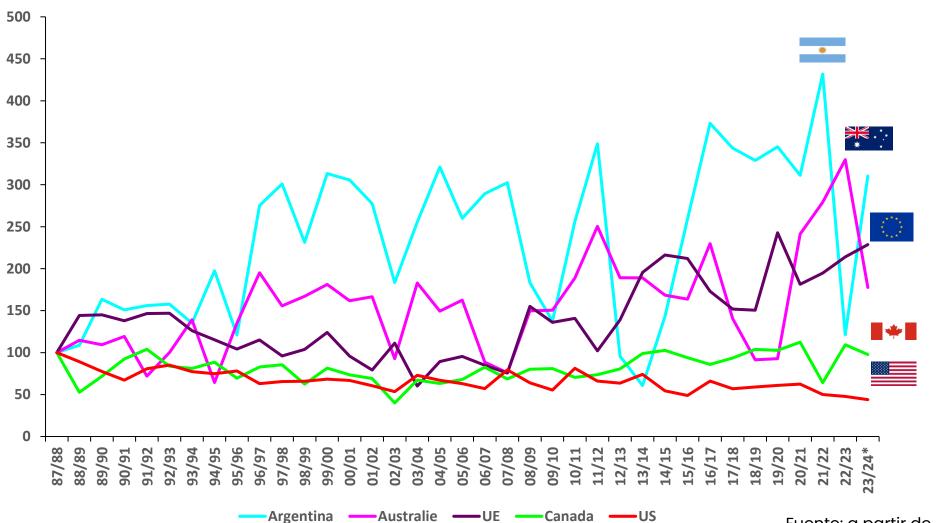
Fin de la customización "a granel" : 12,5% proteina


A su arribo RUSIA con 12,5% de proteína (COMO MINIMO) inunda el mercado de trigo

Ovinovas	Blend MARRUECOS (comprador privado)		
Origenes	Francia	Hard (US, Argentina, Alemania)	Producción local
% en el blend	40-70%	20-30%	15-30%
PH	76-78	80	76-80
Falling number	230	>300	300
W	190	230-250	160-200
% proteina (s.s)	10,5-11,5	12-13	11-12
Humedad %	13,5	12-12,5	12
% Gluten húm.	-	-	-

	Blend MARRUECOS (comprador privado)		
Origenes	Francia	Hard (US, Argentina, Alemania, Russia, Ucrania, origenes bálticos)	Producción local
% en el blend	30-60%	30-40%	15-30%
PH	76-78	80	76-80
Falling number	230	>300	300
W	190	230-250	160-200
% proteina (s.s)	10,5-11,5	12-13	11-12
Humedad %	13,5	12-12,5	12
% Gluten húm.	-	-	-

hoy en el mercado público egipcio (GASC)


% Proteína (s.s)

Cortesía L. PierbattisTabla: a partir de Intercéréales Casablanca

Customización americana: costumer focus

Evolución de exportaciones de trigo (all wheat) en índice (índice 100 = 87/88)

Diversificación de los destinos de las exportaciones rusas

Del 12,5% de proteína para todos al :

nbios de quidelines en destinos

11,5%

12,5

13,5 %

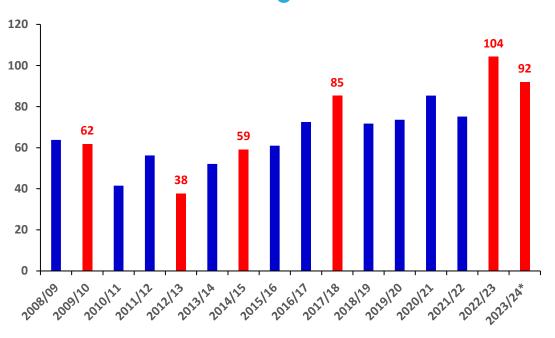
Destino de las exports de trigo ruso (julio/junio), en

50 destinos	2014/15
Turquía	4 212
Egipto	3 635
Irán	1 743
Azerbaiyán	1 359
Yemén	831
Sudán	792
Nigeria	721
Sudáfrica	670
Georgia	649
Kenia	465
Israel	446
EAU	440
Tanzania	428
Mexico	406
Jordania	377
Omán	230
Letonia	238
Libia	223
Indonesia	225
Pakistán	210
Otros	3 301
Total	21 600

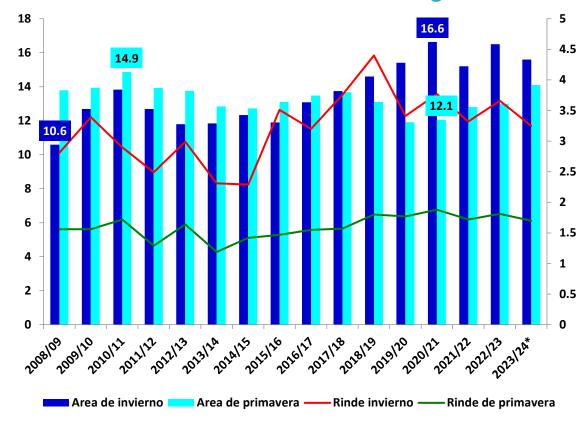
90 destinos	2021/22
Turquía	6 403
Irán	5 860
Egipto	4 678
Kazajistán	2 170
Azerbaiyán	921
Arabia Saudita	904
Argelia	479
Siria	675
Sudán	613
Israel	557
Libia	527
Letonia	418
Armenia	390
Kirguistán	300
Bangladesh	297
Bielorsia	275
Kenia	221
Pakistán	222
Yemén	135
EAU	32
Otros	4 542
Total	30 620

62 destinos	2022/23	
Turquía	8 686	
Egipto	7 640	
Kazajistán	3 155	
Arabia Saudita	2 483	
Irán	2 475	
Argelia	2 150	
Pakistán	1 618	
Sudán	1 486	
Bangladesh	1 361	
Libia	1 321	
Israel	1 175	
Azerbaiyán	1 090	
Yemén	1 057	
Kenia	1 051	
Siria	760	
Letonia	681	
EAU	601	
Brasil	598	
Mexico	574	
Kirguistán	495	
Otros	4 843	
Total	45 300	

Switch export harina (Tráfico de Perfeccionamiento Activo)

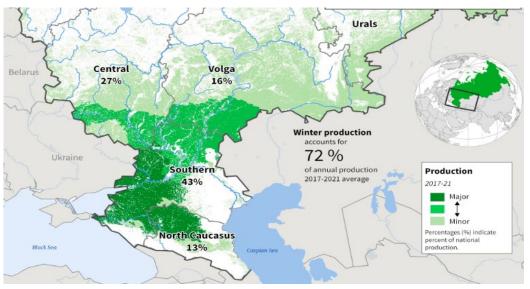

Switch export harina

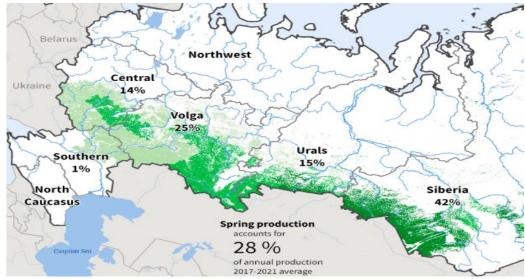
Switch export harina


Plano productivo

Aumento del área de trigos de invierno

Producción de trigo ruso, en MMT




Area en Moha & rinde en t/ha de trigo ruso

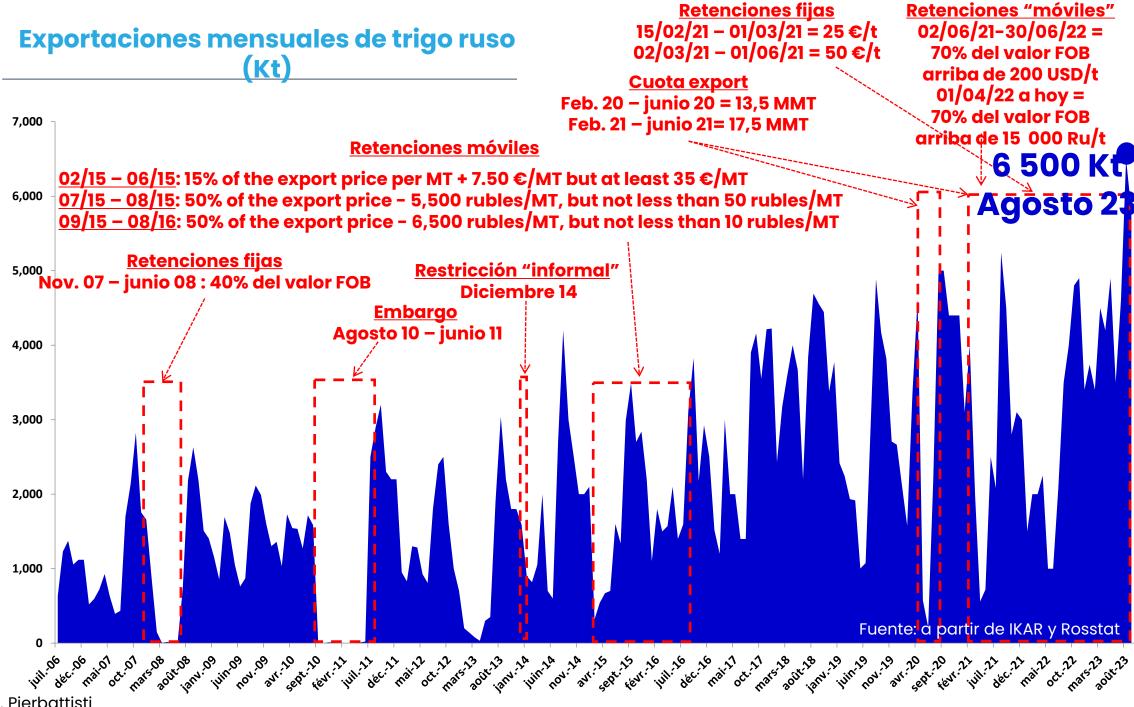
Plano logístico

Trading geográfico (y político)

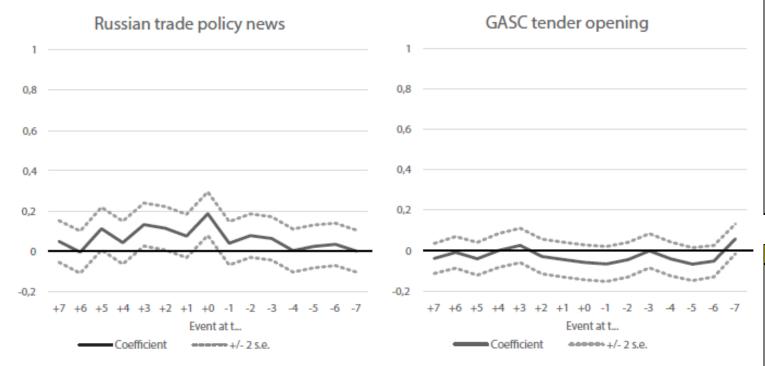
Mapas: USDA, Synacomex

- Puertos que rotan de 20 a 25 veces
- Transhipment de Kavkaz = representa un 24% de las exports de trigo. El estrecho de Kertch concentra 40% de las exports. Y las terminales de Novo = 35%.
- VTB Group = propietario en Novo de 35% de NKHP y del 100% de NZT. Y de 50% del puerto de Taman
- VTB controla casi el 40% de la logística marítima y 80% de la ferroviaria. Accionista de Demetra (2do exportador de trigo en 2021/22) hasta julio 23
- Grain Gates LLC deviene el 1er exportador de trigo ruso en 2022/23. Vínculo con Demetra (VTB)

Plano geopolítico: el lobbying público del trigo ruso


Cambio de especificaciones en mercados públicos, y también

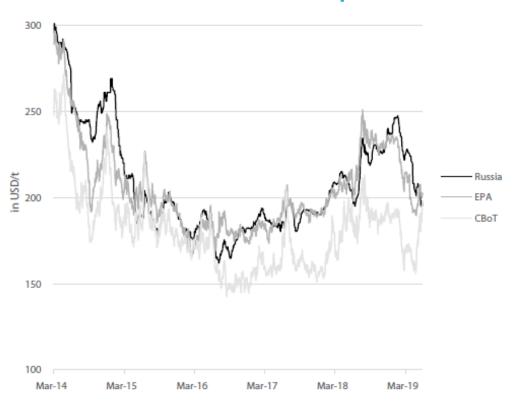
- Argelia: Cambio en sep. 20 = < 0,1% de bug damaged = 11% pro base seca y 160 W, y de 0,1% a 0,5% de bug damaged = 12,5% pro y 240 W. Cambio en nov. 21 = bug damaged hasta 1% con 11,5% de pro y 180 W.</p>
- Arabia Saudita: cambio en dic. 19 = de 0% de bug damaged a 0,5%.
- Brasil: cambio en protocolo fitosanitario para trigo ruso en agosto 20 = inicio de programa de exportaciones de regular desde Kalingrado


Compradores públicos de trigo norte África & P. Oriente (Representan cerca del 60% de las imports de la región)

 Marruecos: agosto 23 = Importante cambio por parte de la ONICL en su régimen de subvenciones a la importación de trigo para animar a los fabricantes marroquíes a aprovisionarse en el Black Sea

Incertidumbre política en Rusia: la mayor fuente de **Volatilidad**

Fuente: The rapid rise of Russia's wheat exports: Price formation, spot-futures relations and volatility effects.

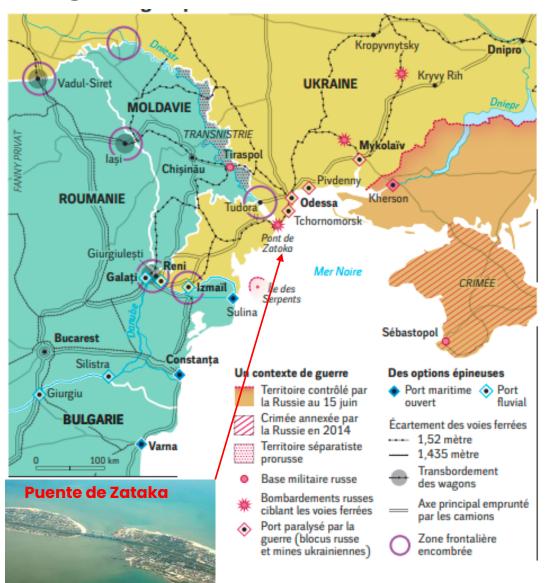

Leibniz Institute of Agricultural Development in Transition Economies

2022/23	Forma de compra	Comentarios
01/06/2022	Tender	
29/06/2022	Tender	
04/07/2022	Direct deal	
13/07/2022	Direct deal	
22/07/2022	Direct deal	
24/08/2022	Direct deal	
08/09/2022	Direct deal	
12/11/2022	Direct deal	
24/11/2022	Direct deal	
30/11/2022	Direct deal	
28/12/2022	Tender	
09/01/2023	Direct deal	
03/02/2023	Direct deal	63% de compras del GASC escaparon de los tenders en 2022/23
16/03/2023	Tender	
06/04/2023	Tender	
04/05/2023	Tender	

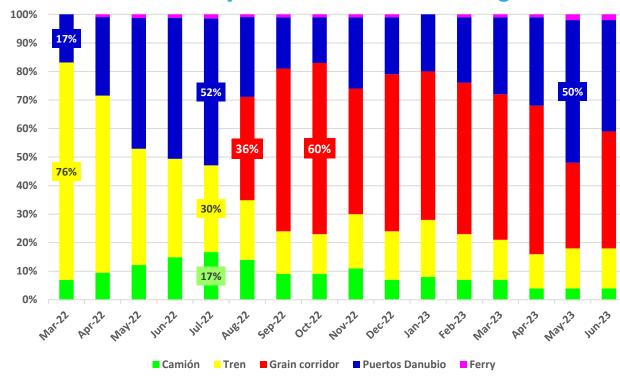
2023/24	Forma de compra	Comentarios
02/08/2023	Tender	8 ofertas rusas a 250 USD FOB
08/08/2023	Tender	14 ofertas rusas de 262 a 305 USD FOB
22/08/2023	Tender	15 ofertas rusas a 270 USD FOB
		25 ofertas rusas a 270 USD FOB.
30/08/2023	Tender	Tender resultado =
		120 Kt rumano a 261 USD FOB
		+ 120 Kt frances a 259 USD FOB
04/09/2023	Direct deal	480 Kt ruso hecho a 252 USD FOB
20/09/2023	Tender	13 ofertas rusas a 270 USD FOB
27/09/2023	Tender	17 ofertas rusas a 270 USD FOB
10/10/2023	Direct deal	480 Kt hechas trigo ruso
12/10/2023	Tender	5 ofertas rusas a 260 USD FOB

Descorrelación entre los mercados organizados y el trigo ruso

Matif no es la excepción...


Fuente: The rapid rise of Russia's wheat exports: Price formation, spot-futures relations and volatility effects.

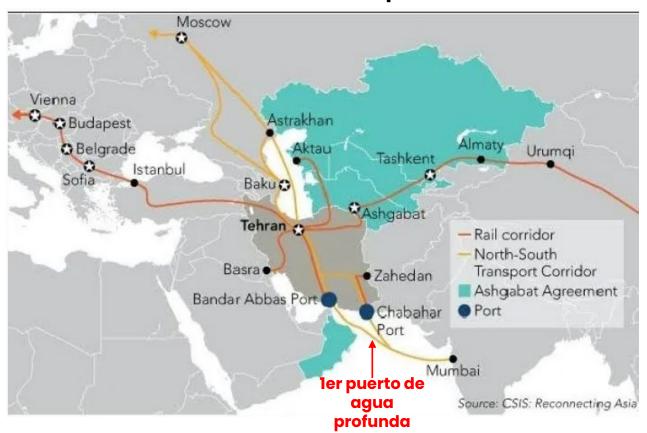
Leibniz Institute of Agricultural Development in Transition Economies


Fuente: gentiliza de Euronext Amsterdam

Logística extremadamente cara fuera del "Big Odessa"

La guerra de los drones

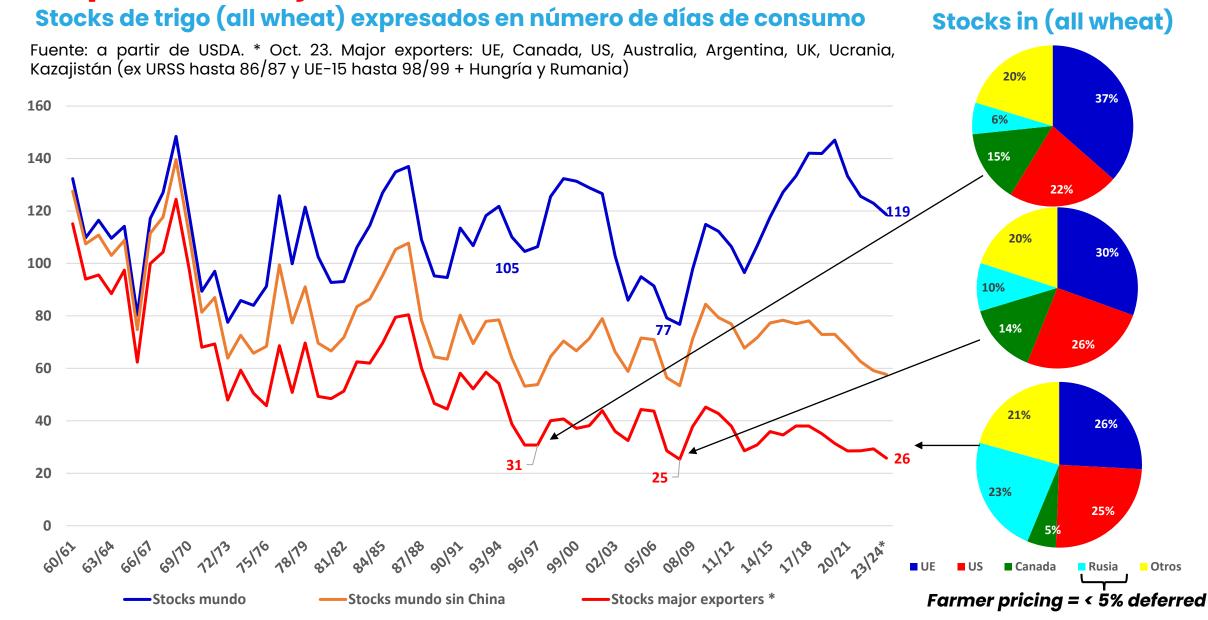
Breadown de exports ucranianas de trigo, en %


- De agosto 22 a junio de 23 se exportó solo un 27% de trigo del total exportado por el corridor
- El 44% del trigo fue destinado a Europa (3% previo a la guerra) y 28% a Middle East (20% antes guerra)

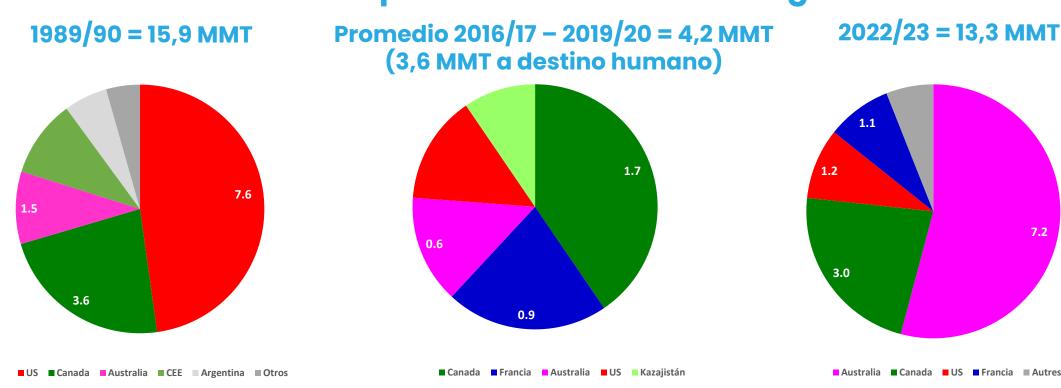
Fuente: a partir de UkrAgroConsult. Mapa: Le monde Diplomatique

Logística política del trigo:

Relanzamiento de los corredores asiáticos para evitar el Bósforo y el canal de Suez (y la costa europea)


International North-South Transport Corridor – INSTC

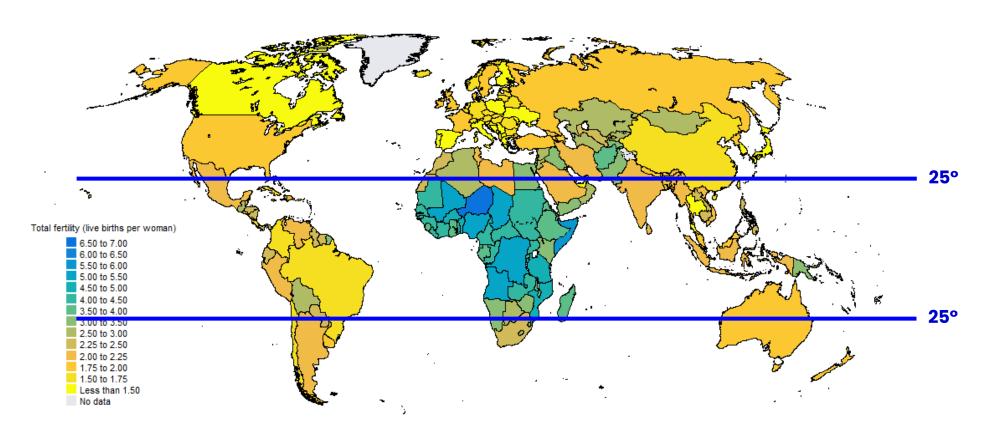
Los stocks o inventarios están en otros jugadores, este puede ser el principal driver bajista...



Los stocks chinos: gran inhibidor de las señales de precios

Los stocks chinos de trigo no reaccionan a las señales de precios, ni a otras tensiones del mercado. Estos reaccionan a los objetivos de política interior...

Rusia lidera las exportaciones y China las importaciones

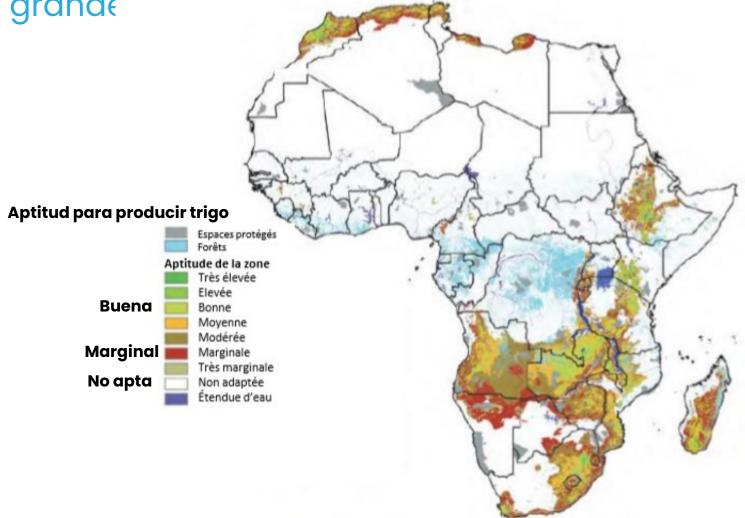

Importaciones chinas de trigo

África representará 40% de la población mundial en 2100

Pese a la caída continua de la tasa de natalidad

Total fertility, 2020-2025 (medium-variant projection)

© 2019 United Nations, DESA, Population Division. Licensed under Creative Commons license CC BY 3.0 IGO.


Data source: United Nations, DESA, Population Division. World Population Prospects 2019. http://population.un.org/wpp/

The designations employed and the presentation of material on this map do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted line represents approximately the Line of Control in Jammu and Kashmir agreed upon by India and Pakistan. The final status of Jammu and Kashmir has not yet been agreed upon by the parties. Final boundary between the Republic of Soudan and the Republic of Soudan has not yet been determined. A dispute exists between the Governments of Argentina and the United Kingdom of Great Britain and Northern Ireland concerning sovereignty over the Falkland Islands (Malvinas).

El continente africano con pocas zonas adaptadas al cultivo de trigo

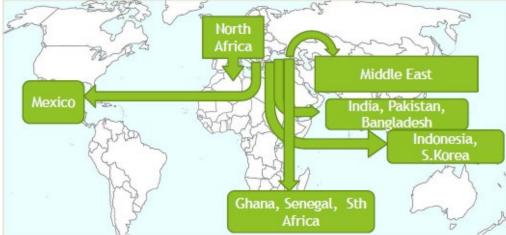
y enfrentadas al cambio climático representara uno de los mercados

mas grande

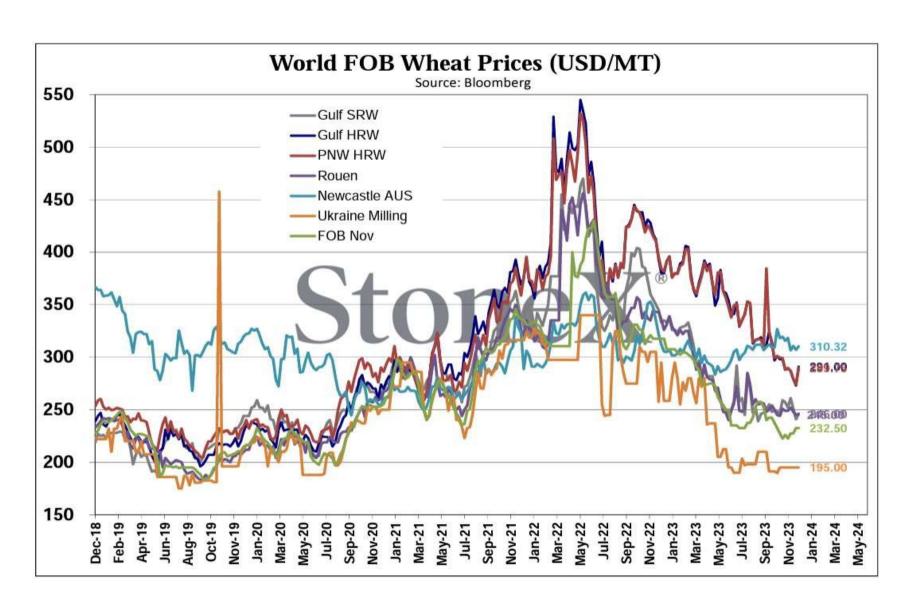
El Mundo cada vez más urbanizado

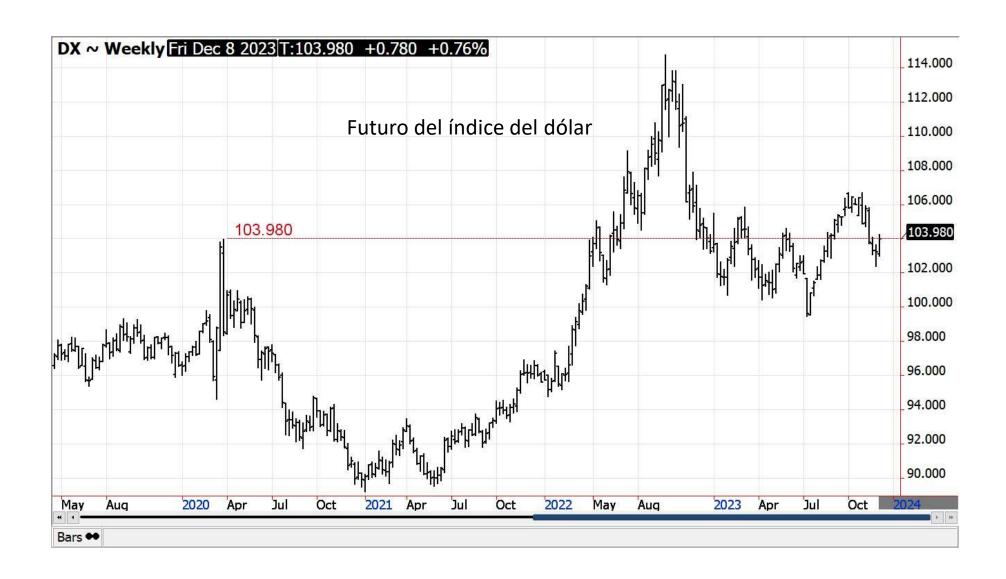
Movilidad, comida fuera del hogar ... esto puede significar más consumo de pan

Figure 1.3 Global urban and rural populations: historical and projected


Note: Projected figures from 2015 onward refer to the medium variant scenario.

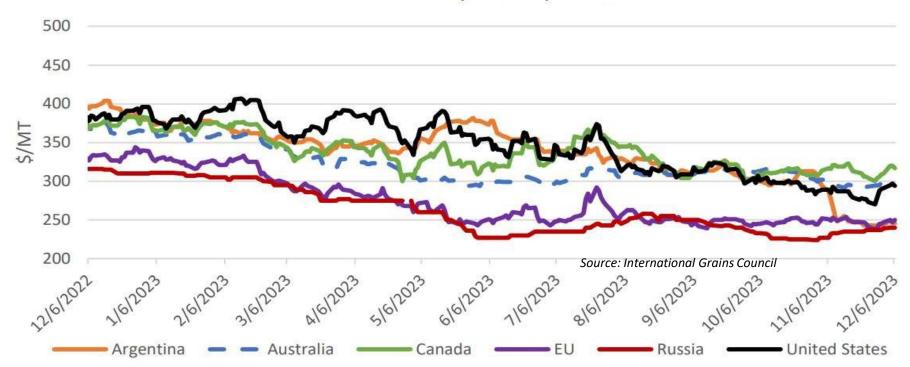
Source: UN, 2015.


Rusia – Acumulado de exportación

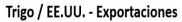

Destinations of Russian Grains Truly Global

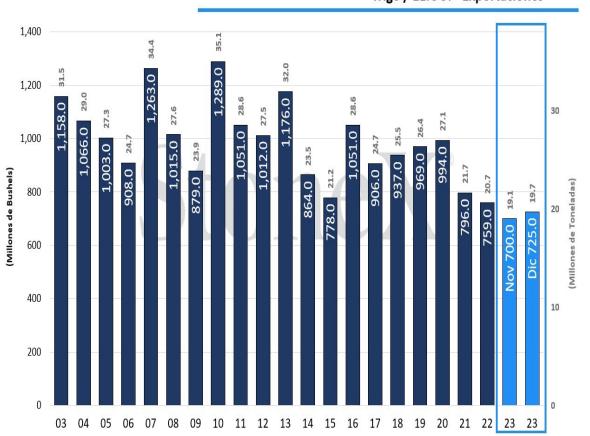
FOB mundiales principales exportadores

Índice del dólar



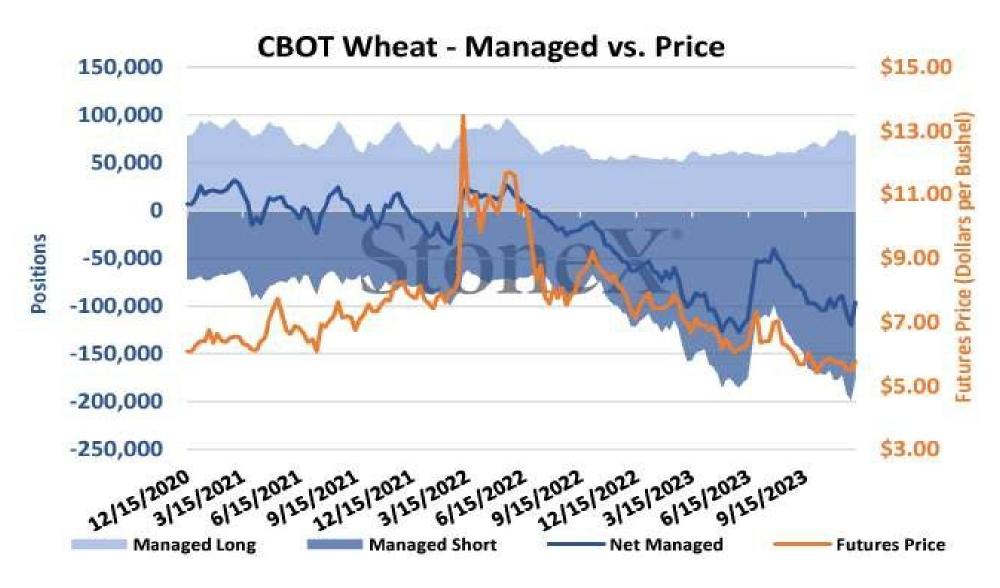
Precios mundiales


Argentina	Australia	Canada	EU	Russia	United States
\$246	\$302	\$317	\$250	\$240	\$294


Note: As of December 6, 2023

International Daily FOB Export Bids

EUA - Exportaciones

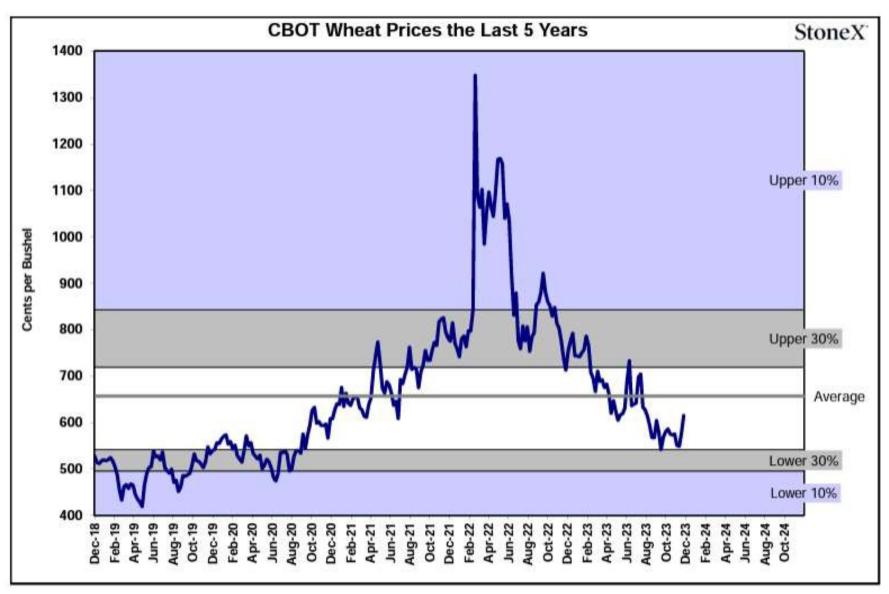


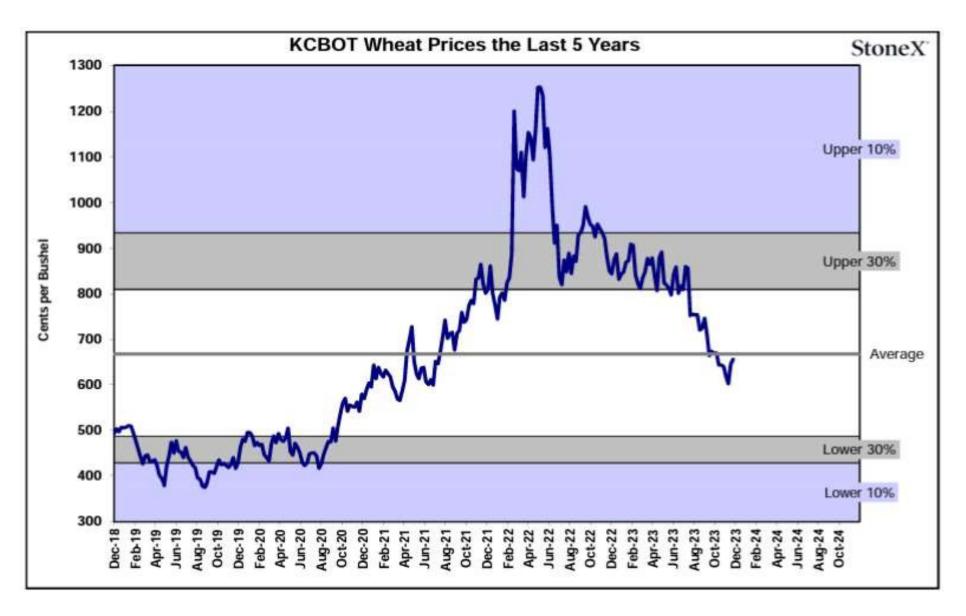
United States Department of Agriculture

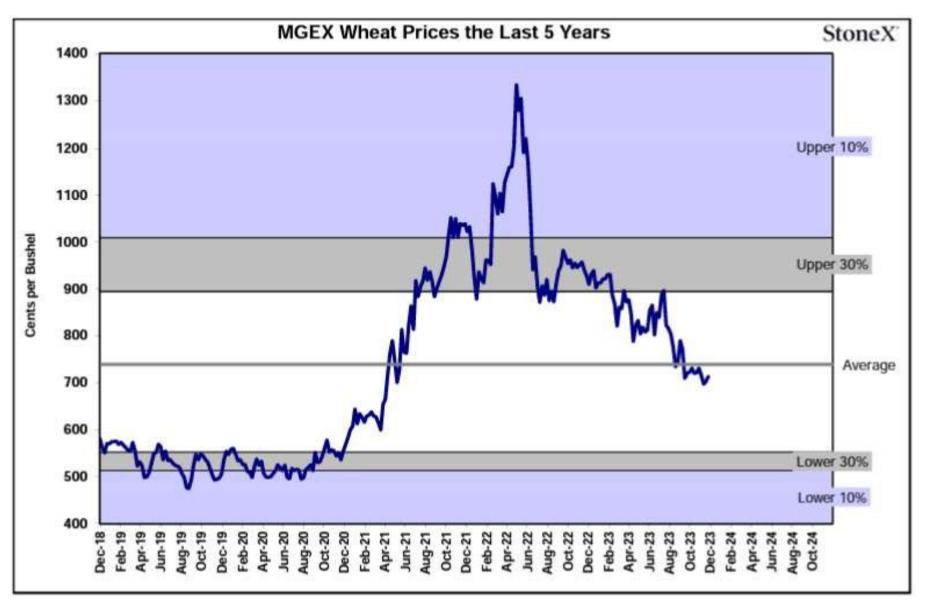
Chicago – Posición de los fondos

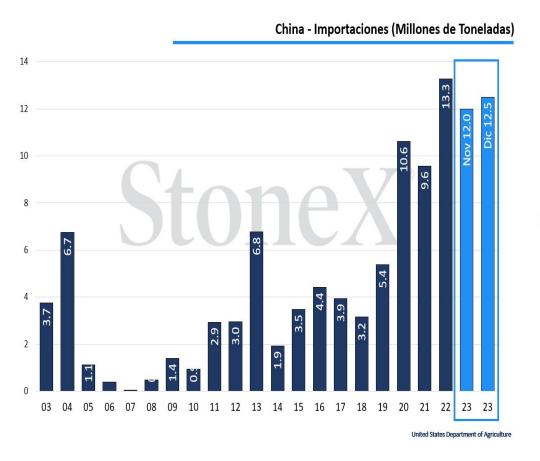
Chicago

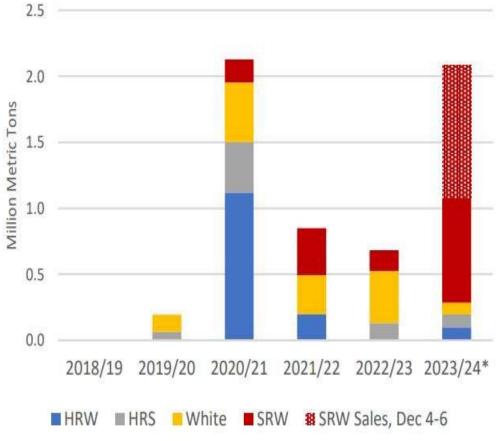
Kansas


Minneapolis

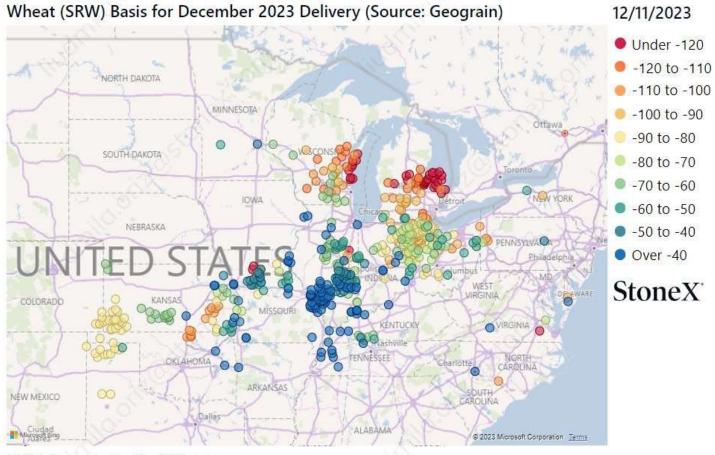

Matif


SRW - Percentiles

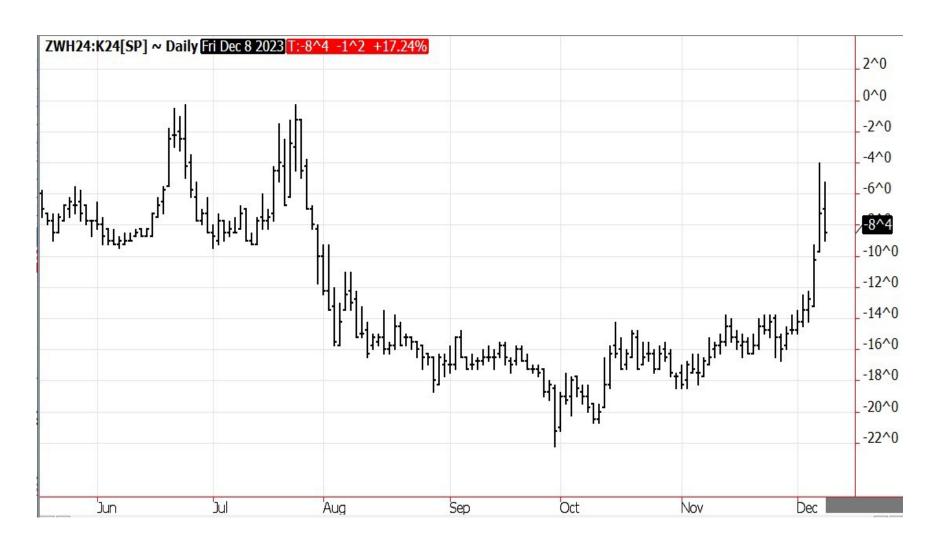

HRW - Percentiles


HRS - Percentiles

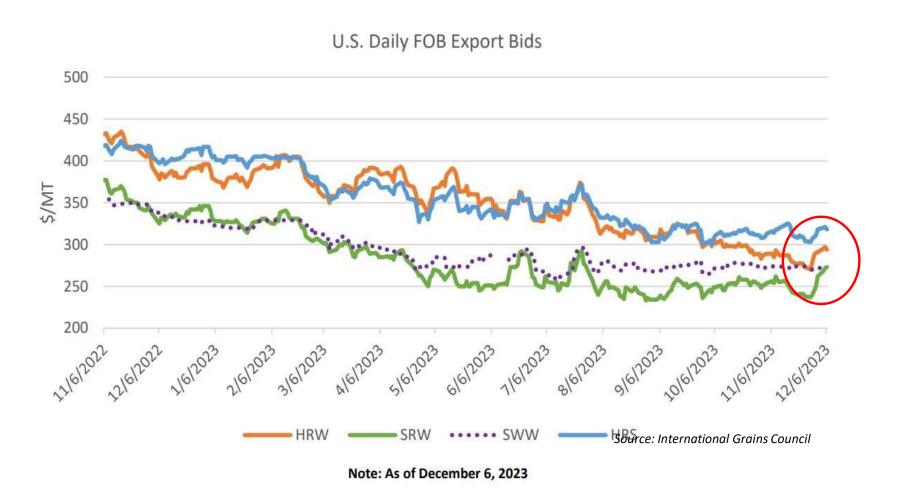
Demanda de China



MY U.S. Wheat Commitments to China (Jun-May)


Bases internas EUA

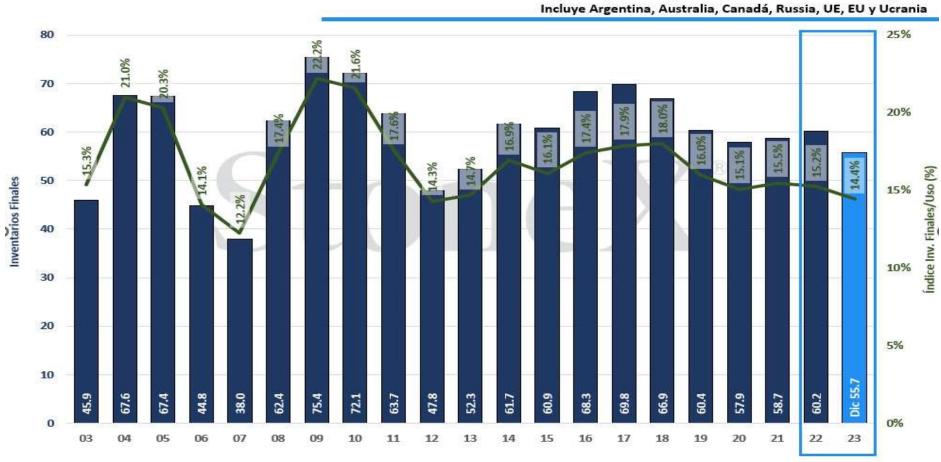
Promedio nacional de las bases de SRW: -71 H



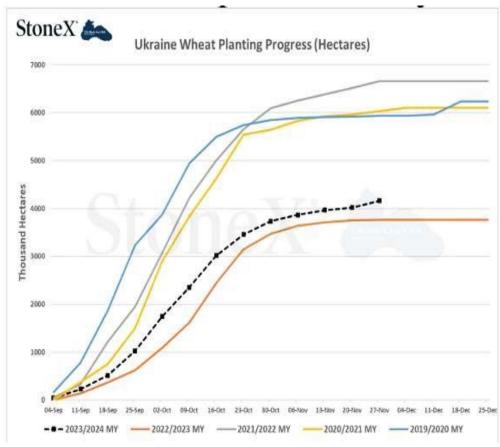
All Bids Converted to Mar 2024 Futures

Diferencial WH/WK

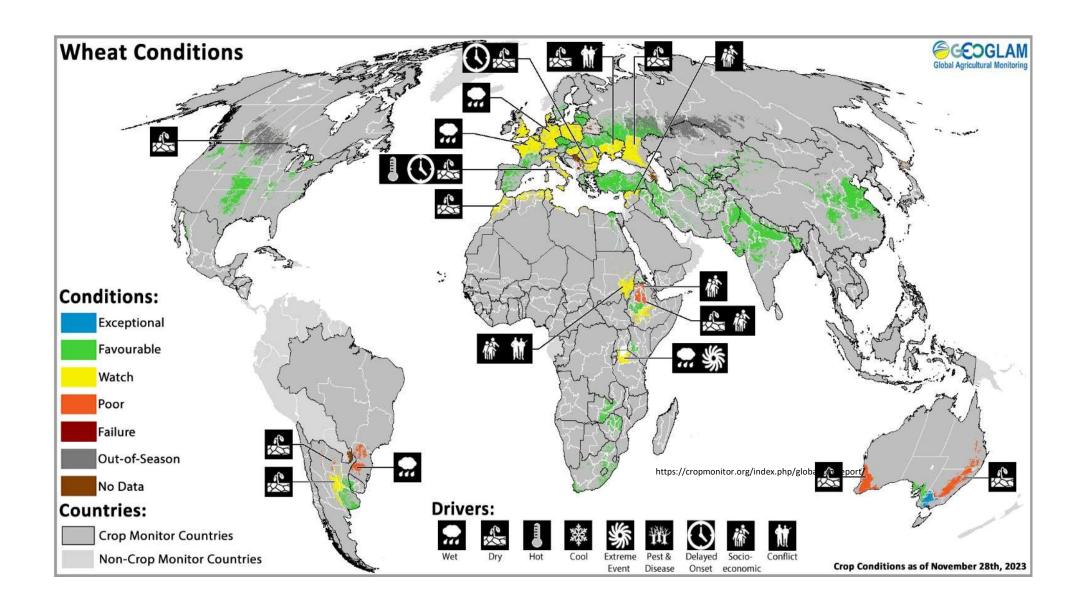
FOB de trigo estadounidense



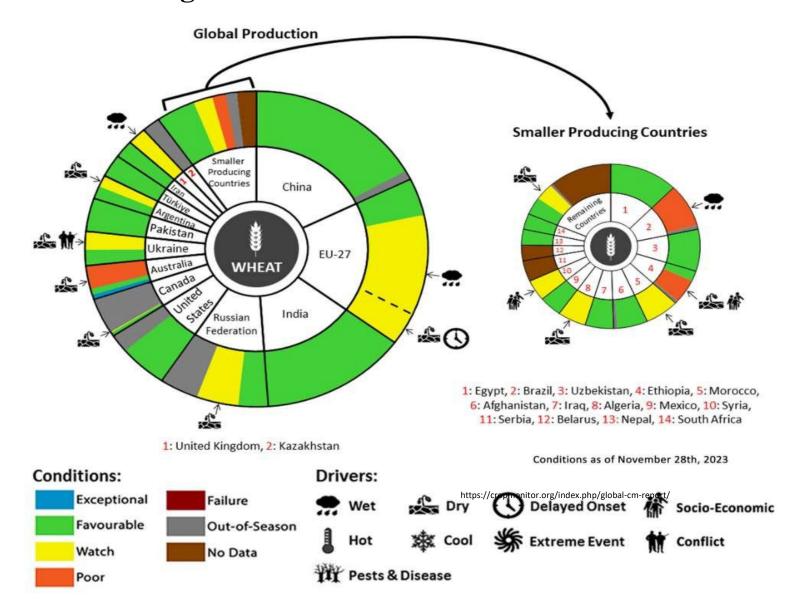
Perspectivas del Mercado Mundial de Trigo.


Inventarios en principales exportadores

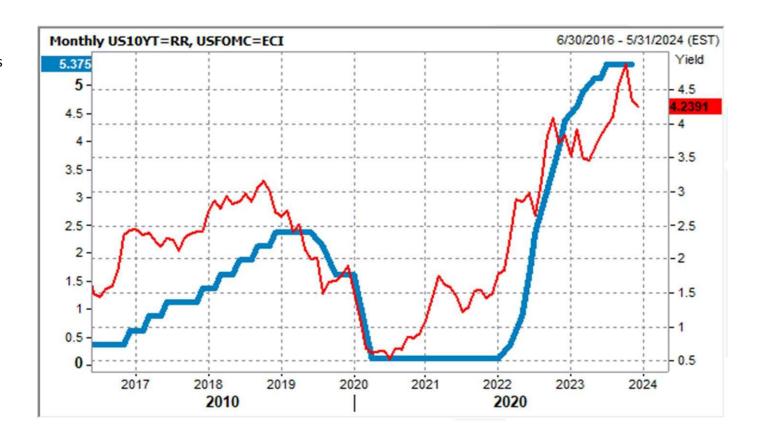
Inventarios mundiales de los principales exportadores e Indice de Inv/Uso

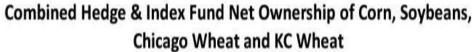


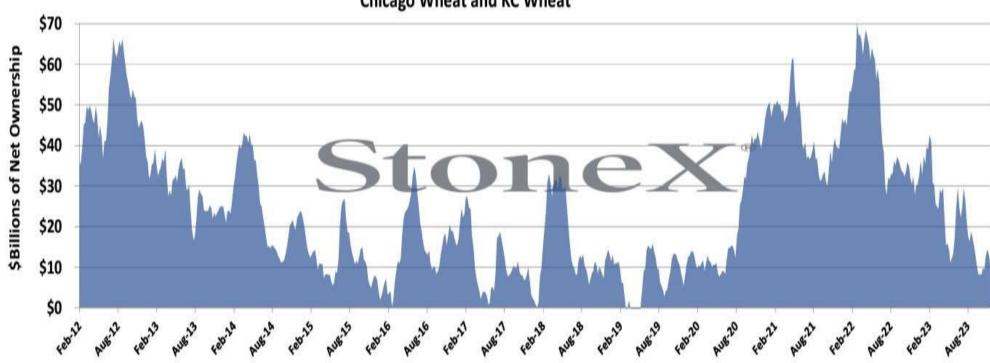
Mar Negro - Progreso de siembra



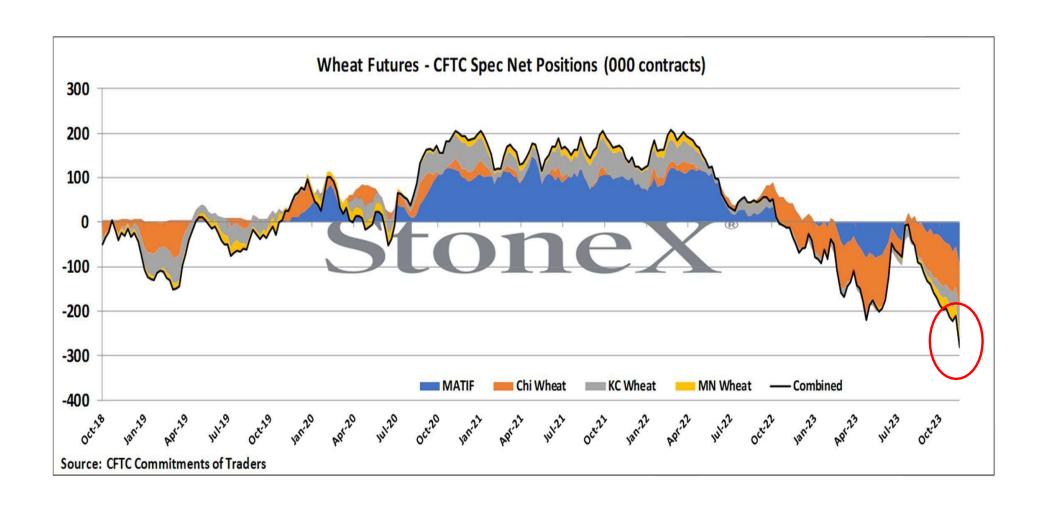
Estado de los trigos mundial


Estado de los trigos mundial


Riesgo sistémico


Rendimiento de bonos 10 A Tasas

de interés EUA


Fondos en los mercados agrícolas

Source: CFTC Commitments of Traders

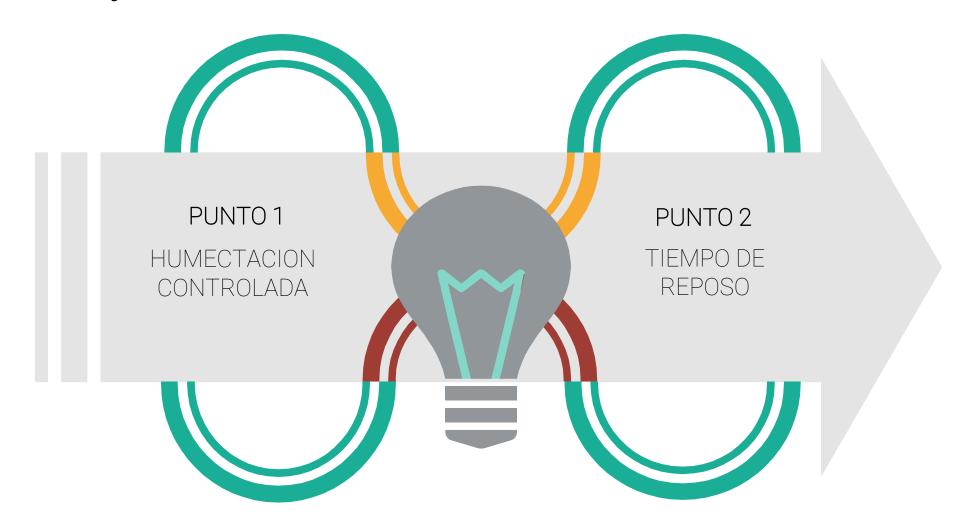
Fondos en los mercados de trigo

Acondicionamiento del trigo: casos de estudio que evidencian el impacto en la extracción de harina y en los productos terminados.

MSc ENZO GALLUZZO FRANZESE

Acondicionamiento Optimo del Trigo

Old Slogan of the Experienced Miller


66

Tener el trigo limpio, consistente y bien acondicionado en la primera etapa de molienda es al menos la mitad de la batalla hacia el equilibrio del molino, lo que permite un mejor resultado en la extracción y calidad de la harina producida.

"Having clean, consistetent, well-prepared wheat at the first grinding stage is at least half the battle toward mill balance, which results in the most favorable flour extraction and flour quality".

¿Que es el acondicionamiento de Trigo?

Consiste en ajustar el contenido medio de humedad de cada grano a moler, mediante procesos de humectación controlados y acompañados de un tiempo de reposo hasta lograr una mejor distribución de dicha humedad.

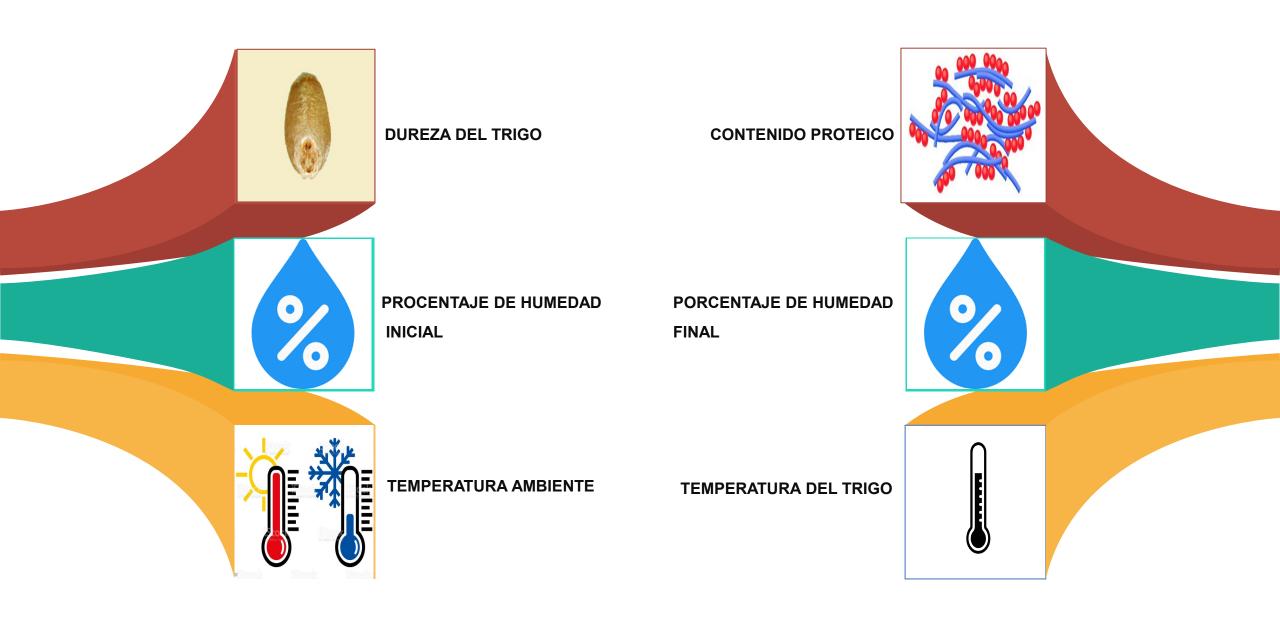
Objetivos del Acondicionamiento de Trigo

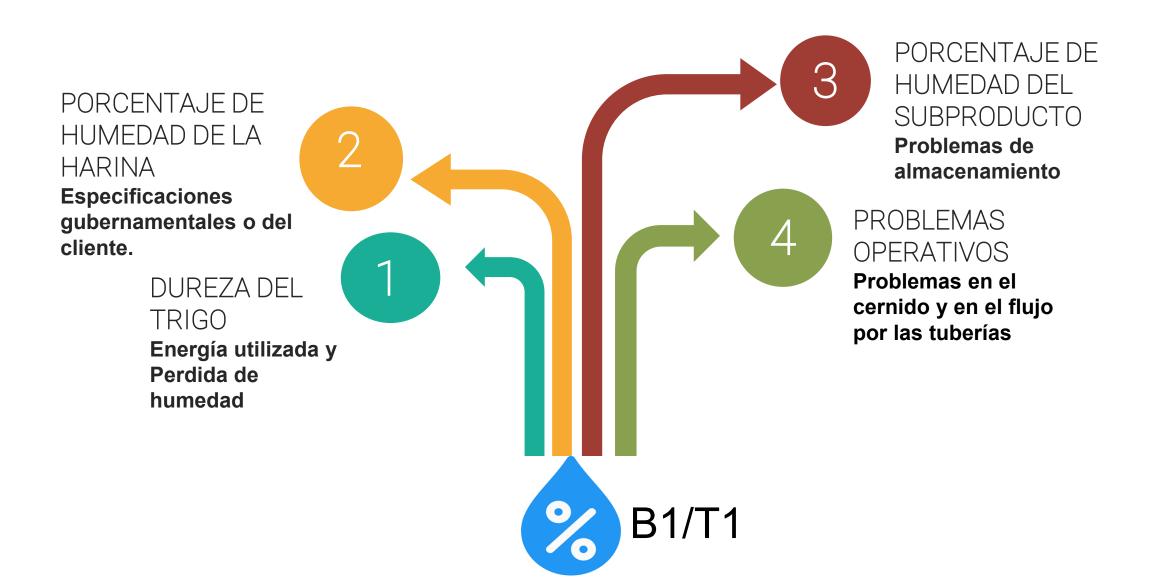
Objetivos del Acondicionamiento de Trigo

Ablandar el endospermo

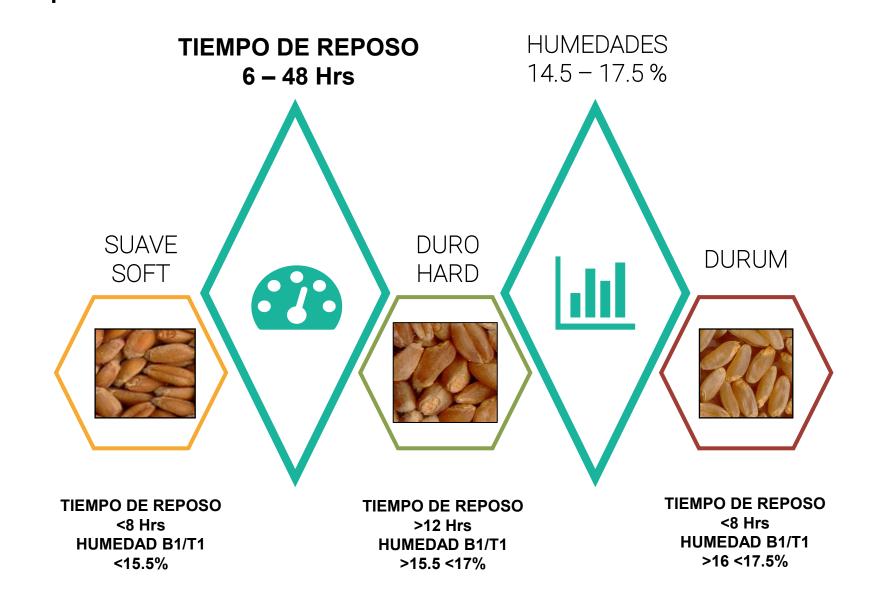
- Se propicia un incrementa en la extracción de harina
- Se reduce el consumo energético
- Se reduce el nivel de ruido de los bancos de molienda se reduce
- Se reduce el contenido de cenizas en la harina

Hacer mas resistente el salvado o la cascara a la fricción


- El salvado tiene tendencia a quebrarse menos y queda en pedazos mas grandes
- Las hojuelas grandes de salvado facilitan la remoción del endospermo adherida a las mismas con los cilindros estriados
- Se reduce las motas o pecas de salvado en la harina


Ajuste del porcentaje de humedad de la harina

- Se logran condiciones constantes de molienda, si logran condiciones constantes de humedad.
- Se logran mejores resultados funcionales en la harina
- Incrementa el rendimiento para el molinero


Factores con incidencia en el tiempo de reposo

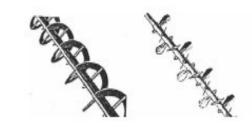
En la primera trituración el porcentaje de humedad es influenciado por las siguientes variables:

El tiempo de reposo y las humedades varían de forma importante...

Diferentes equipos para remojar (rociar) el trigo

Remojo lento

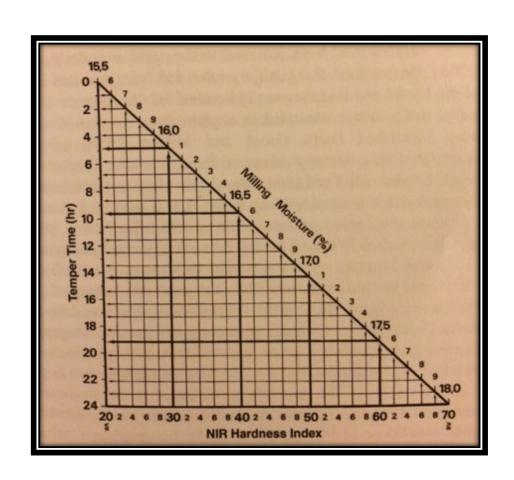
Rosca de paletas


-H2O add.: < 3%

Remojo rapido

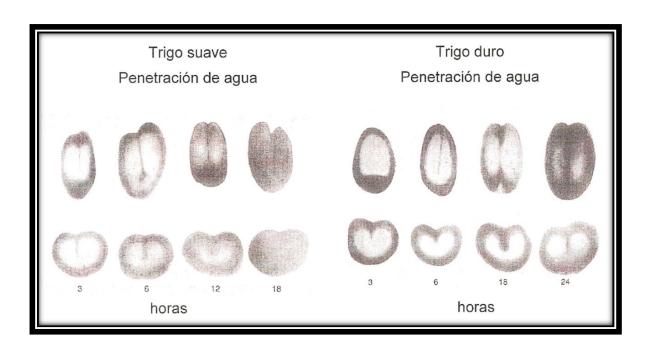
- MOZJ rociador intensivo
- H2O add.: < 5.5%MOZK Rociador de 3 rotores
- H2O add.: < 7%

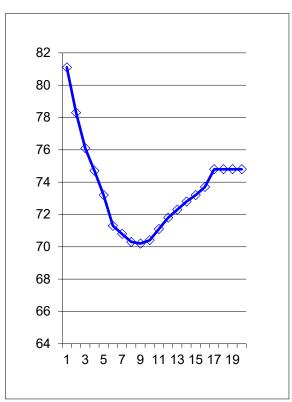
MOZL Rociador turbo


- H2O add.: < 7%

Humedad de acondicionamiento idónea y constante tiene un gran impacto en la calidad y en la eficiencia, por lo tanto algunas recomendaciones son:

- ☐ Tiempos de Acondicionamiento y Humedades
- ✓ Humedad de Trigo en la primera trituración: 14,0% - 17,5 %
- ✓ Tiempo de Reposo: 3 48 Horas
- ☐ El porcentaje de humedad en la primera rotura o trituración es influenciado por:
- ✓ Porcentaje de humedad de la harina Especificaciones de gubernamentales o del cliente
- ✓ Dureza del trigo
- ✓ Porcentaje de humedad del subproducto
 Problemas de almacenamiento
- ✓ Problemas operativos
 Problemas en el cernido y en el flujo por las tuberías




El agua penetra o se difunde al centro del grano de forma gradual en el reposo...

TIEMPO DE REPOSO

Las variaciones en la humedad y en los tiempos de reposo ocasionan fluctuaciones en la distribución de los productos en el molino, por lo tanto, afectan las cenizas, la apariencia del producto, así como, la calidad funcional de la harina...

No se debe exceder el % de agua recomendado para el humectador

CASO DE ESTUDIO No.1 / Acondicionamiento de Trigo Impacto en el proceso de molienda y la calidad de los productos obtenidos Granulometría en Molienda B1/T1

Tamiz/Abertura (u)	TEST 8 Hr	(60% water)	TEST	7 8 Hr	TEST	20 Hr
Tamiz (μ)	0/0	Cenizas %	0/0	Cenizas %	0/0	Cenizas %
1180	58.1	2,02	61.1	2,13	59.6	2,23
850	10.4	1.1	9.9	1.01	10.4	1.15
500	13.4	0.76	12.7	0.67	13.8	0.63
250	10.6	0.69	8.8	0.63	10.0	0.62
<250	7.5	0.59	4.4	0.54	6.4	0.495

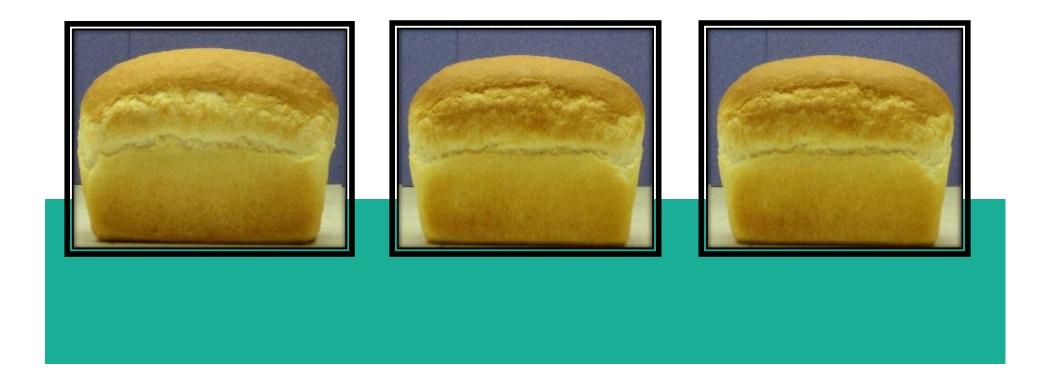
Humedad	Humedad	Humedad
Inicial	B1/T1 (60% water)	B1/T1
12,7%	14,4%	15,9%

ABERTURA REND. MOL.	0,5 mm
DISPOSICION/ACCION	Dorso : Dorso
NUMERO DE ESTRIAS	4 Est/cm
INCLINACION ESTRIADO	4%
DIFERENCIAL	1:2.5

CASO DE ESTUDIO No.1 / Acondicionamiento de Trigo Impacto en el proceso de molienda y la calidad de los productos obtenidos

Resultados Físicos y Químicos de las harinas obtenidas

VARIABLE	TEST 8 hr (60% water)	TEST 8 hr	TEST 20 hr
Extracción %	78,3	76,7	77,2
Cenizas % b.s.	0.78	0,64	0,61
Proteína %	13,05	12,95	12,83
Gluten Humedo %	30,1	30,5	30,9
Almidon Dañado %	9,3	7,4	6,9
Humedad %	12,9	13,4	13,9
Falling Number (seg)	389	372	363

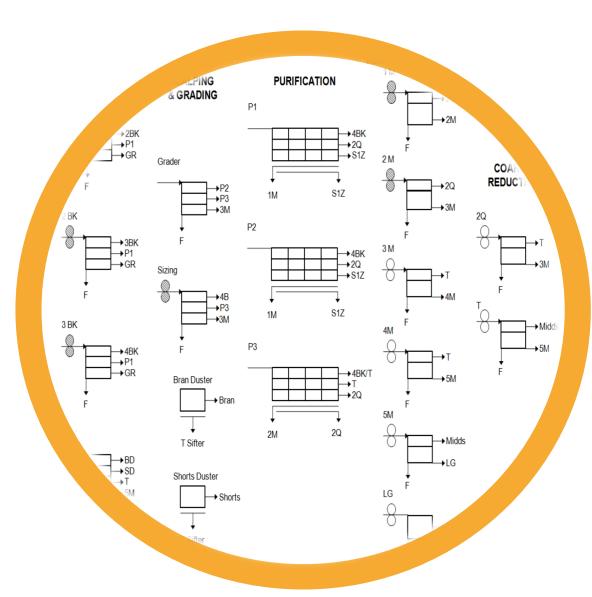

CASO DE ESTUDIO No.1 / Acondicionamiento de Trigo Impacto en el proceso de molienda y la calidad de los productos obtenidos Resultados Reológicos de las harinas obtenidas

VARIABLE	TEST 8 hr (60% water)	TEST 8 hr	TEST 20 hr
Absorción Farinograma %	62,1	60,9	61,2
Tiempo de desarrollo (Minutos)	4,8	5,2	5,5
Estabilidad (Minutos)	9,5	10,2	11,8
Indice de tolerancia al mezclado (BU)	40	30	30
W	335	354	366
P mm	109	115	121
L mm	101	107	107
P/L	1,08	1,07	1,13

CASO DE ESTUDIO No.1 / Acondicionamiento de Trigo Impacto en el proceso de molienda y la calidad de los productos obtenidos Resultados de la Panificación de las harinas obtenidas

VARIABLE	TEST 8 hr (60% water)	TEST 8 hr	TEST 20 hr
Absorción Panadera %	60,1	58,9	59,2
Tiempo de Mezclado (minutos)	9,5	8,1	8,3
Tiempo de Fermentación	90	90	90
Sensacion de la masa	Fuerte	Muy Fuerte	Muy Fuerte
Volumen Especifico cm3/gr	5,3	6,1	6,3
Bread Score	85	91	9

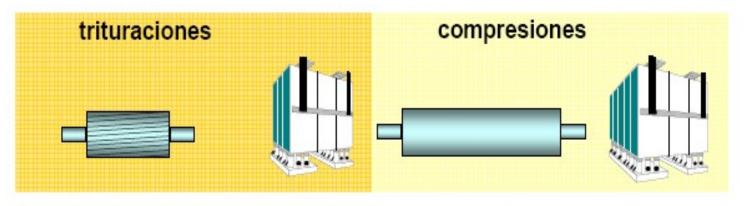
Resultados Finales de la Panificación de las harinas obtenidas

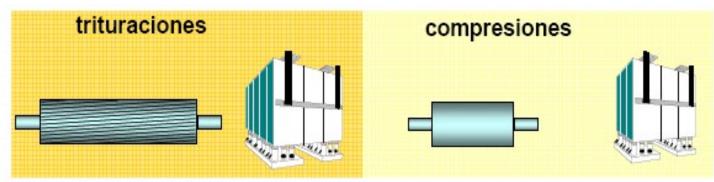


5,3 cm3/gr 85% Test 8 hr (60% water)

6,1 cm3/gr 91%Test 8 hr

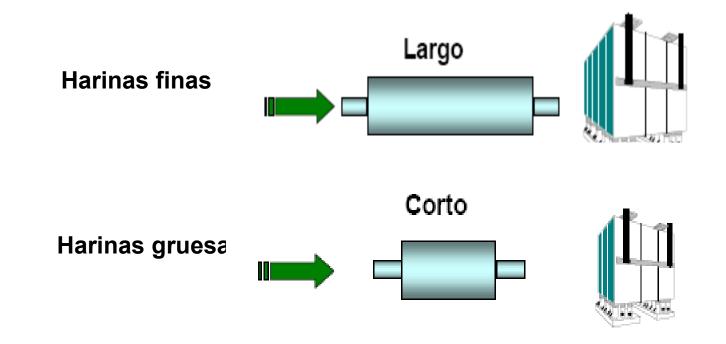
6,3 cm3/gr 94%Test 20 hr


Características de los diagramas de molienda según cada tipo de trigo: Casos de estudio para comprender el impacto.


MSc ENZO GALLUZZO FRANZESE

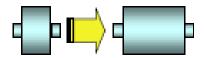
Influencia de materia prima

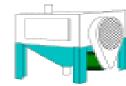
Trigos Duros



Trigos Suaves

Influencia de productos terminados


Granulación de harina:


Influencia de productos terminados

Alto porcentaje de humedad en la harina:

• Incremento de longitudes de cilindros

• Más cepilladores de salvado (salvadillo)

• Incremento de la superficie de cernido en todas las pasadas

Longitud de Molienda

- 35% Longitud de Molienda en Trituraciones para Trigo Hard
- 45 % Longitud de Molienda en Trituraciones para Trigo Soft

Área de Cernido

- 45% área de cernido en trituraciones para trigo hard
- 55 % área de cernido en trituraciones para trigo Soft

Superficie de Purificación

• El trigo Soft no requiere purificación

Valores referenciales para usar en el diseño de un diagrama de molienda

SECCION	mm/100 kg/24 hr	mt2/100 kg/24 hr
B1/T1	1,0	0,007
B2/T2	1,0	0,007
B3/T3	0,7	0,0055
B4/T4	0,7	0,005
B5/T5	0,7	0,0045
C1 Fn	1,2	0,006
C1 Gr	0,8	0,0045
C2	1,0	0,0045
C3	0,7	0,004
C4	0,8	0,003
C5	0,6	0,002
C7	0,6	0,0025
C8	0,4	0,0015
C9	0,4	0,0015
TOTAL	11,0	0,061

Cálculos de Longitud de Molienda (índice) mm /100 kg/ 24hr en DIAGRAMA ORIGINAL 100 MT/DIA

Longitud de molienda en mm (milímetros) TRITURACIONES

T1 1 x 1000 mm = 1.000 mm

 $T2.1 \times 1000 \text{ mm} = 1.000 \text{ mm}$

 $T3.1 \times 1000 \text{ mm} = 1.000 \text{ mm}$

 $T4.1 \times 1000 \text{ mm} = 1.000 \text{ mm}$

T5 1 X 1000 mm = 1.000 mm

Total Trituraciones = 5.000 mm

Longitud de molienda en mm (milímetros) COMPRESIONES

 $C1 2 \times 1000 \text{ mm} = 2.000 \text{ mm}$

 $C2.1 \times 1000 \text{ mm} = 1.000 \text{ mm}$

C3 1 X 1000 mm = 1.000 mm

 $C4 \frac{3}{5} \times 1000 \text{ mm} = 600 \text{ mm}$

C5 ½ X 1000 mm = 500 mm

C6 ½ X 1000 mm = 500 mm

 $C7 \frac{2}{5} \times 1000 \text{ mm} = 400 \text{ mm}$

C8 ½ X 1000 mm = 500 mm

C9 ½ X 1000 mm = 500 mm

Total Compresiones = 7.000 mm

 $TOTAL\ TRIT + COMP = 12.000\ MM$

Comparativo de índices de molienda y cernido acorde al estándar

SECCION	mm/100 kg/24 hr	mm/100 kg/24 hr	mt2/100 kg/24 hr	mt2/100 kg/24 hr
B1/T1	1,0	1,0	0,007	0,007
B2/T2	1,0	1,0	0,007	0,007
B3/T3	0,7	1,0	0,0055	0,006
B4/T4	0,7	1,0	0,005	0,0045
B5/T5	-	1,0	-	0,0045
C1 Fn	1,5	1,0	0,009	0,006
C1 Gr	1,0	1,0	0,006	0,006
C2	1,5	1,0	0,006	0,005
C3	1,0	1	0,004	0,0035
C4	0,8	0,6	0,003	0,003
C5	0,6	0,5	0,002	0,0025
C7	0,6	0,4	0,0025	0,0026
C8	0,5	0,5	0,0015	0,0017
C9	0,5	0,5	0,0015	0,0017
TOTAL	11,4	12,0	0,060	0,061

Cálculos de Longitud de Molienda (índice) mm /100 kg/ 24hr en DIAGRAMA MODIFICADO 100 MT/DIA

Longitud de molienda en mm (milímetros) TRITURACIONES

T1 1 x 1000 mm = 1.000 mm

 $T2.1 \times 1000 \text{ mm} = 1.000 \text{ mm}$

 $T3.1 \times 1000 \text{ mm} = 1.000 \text{ mm}$

 $T4.1 \times 1000 \text{ mm} = 1.000 \text{ mm}$

Total Trituraciones = 4.000 mm

Longitud de molienda en mm (milímetros) COMPRESIONES

 $C1 2 \times 1000 \text{ mm} = 2.000 \text{ mm}$

 $C2.1 \times 1000 \text{ mm} = 2.000 \text{ mm}$

C3 1 X 1000 mm = 1.000 mm

 $C4 \frac{3}{5} \times 1000 \text{ mm} = 600 \text{ mm}$

C5 ½ X 1000 mm = 500 mm

C6 ½ X 1000 mm = 500 mm

 $C7 \frac{2}{5} \times 1000 \text{ mm} = 400 \text{ mm}$

C8 ½ X 1000 mm = 500 mm

C9 ½ X 1000 mm = 500 mm

Total Compresiones = 8.000 mm

 $TOTAL\ TRIT + COMP = 12.000\ MM$

Comparativo de índices de molienda después de la modificación

SECCION	mm/100 kg/24 hr	mm/100 kg/24 hr	mm/100 kg/24 hr
B1/T1	1,0	1,0	1,0
B2/T2	1,0	1,0	1,0
B3/T3	0,7	1,0	1,0
B4/T4	0,7	1,0	1,0
B5/T5	-	1,0	-
C1 Fn	1,5	1,0	1,0
C1 Gr	1,0	1,0	1,0
C2	1,5	1,0	2,0
C3	1,0	1	1
C4	0,8	0,6	0,6
C5	0,6	0,5	0,5
C7	0,6	0,4	0,4
C8	0,5	0,5	0,5
C9	0,5	0,5	0,5
TOTAL	11,4	12,0	12,0

Comparativo de índices de molienda después de la modificación

SECCION	mt2/100 kg/24 hr	mt2/100 kg/24 hr	mt2/100 kg/24 hr
B1/T1	0,007	0,007	0,007
B2/T2	0,007	0,007	0,007
B3/T3	0,0055	0,006	0,006
B4/T4	0,005	0,0045	0,0045
B5/T5	-	0,0045	-
C1 Fn	0,009	0,006	0,006
C1 Gr	0,006	0,006	0,006
C2	0,006	0,005	0,0095
C3	0,004	0,0035	0,0035
C4	0,003	0,003	0,003
C5	0,002	0,0025	0,0025
С7	0,0025	0,0026	0,0026
C8	0,0015	0,0017	0,0017
C9	0,0015	0,0017	0,0017
TOTAL	0,060	0,061	0,060

CASO DE ESTUDIO No.2 / Diagrama de Molienda Impacto en el proceso de molienda y la calidad de los productos obtenidos

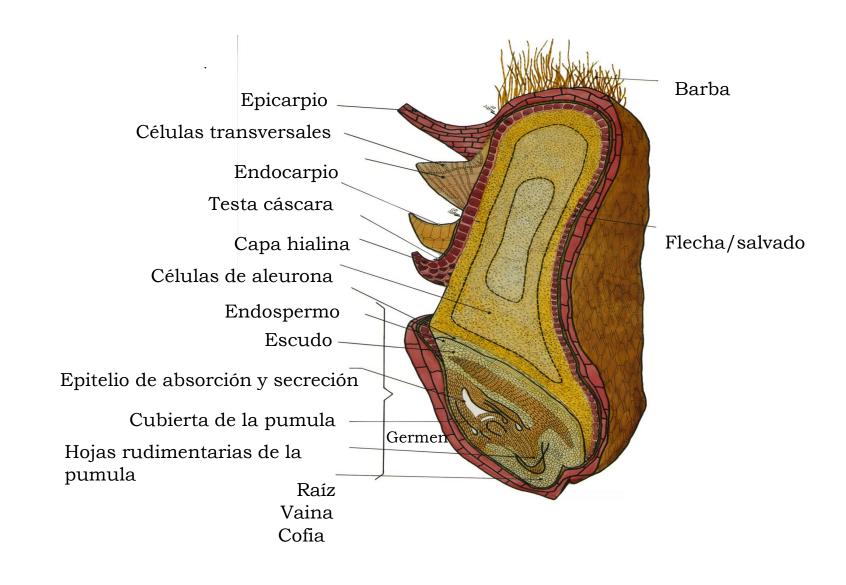
Resultados Físicos y Químicos de las harinas obtenidas

VARIABLE	DIAGRAMA ORIGINAL	DIAGRAMA MODIFICADO
Extracción %	75,2	76,8
Cenizas % b.s.	0.60	0,63
Proteína %	11,3	11,4
Gluten Humedo %	27,5	27,7
Almidon Dañado %	5,9	6,3
Humedad %	14,9	14,8
Falling Number (seg)	326	340

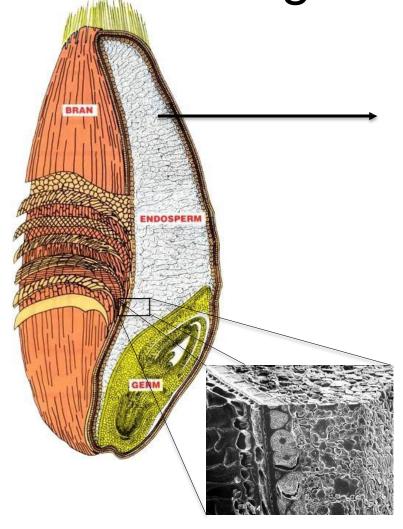
CASO DE ESTUDIO No.2 / Diagrama de Molienda Impacto en el proceso de molienda y la calidad de los productos obtenidos Resultados Reológicos de las harinas obtenidas

VARIABLE	DIAGRAMA ORIGINAL	DIAGRAMA MODIFICADO
Absorción Farinografo %	58,2	58,9
Tiempo de desarrollo (Minutos)	3,1	3,2
Estabilidad (Minutos)	6,3	7,5
Indice de tolerancia al mezclado (BU)	50	50
W	234	247
P mm	87	86
L mm	95	88
P/L	0,92	0,98

CASO DE ESTUDIO No.2 / Diagrama de Molienda Impacto en el proceso de molienda y la calidad de los productos obtenidos Resultados de la Panificación de las harinas obtenidas


VARIABLE	DIAGRAMA ORIGINAL	DIAGRAMA MODIFICADO
Absorción Panadera %	56,0	57,1
Tiempo de Mezclado (minutos)	4,9	5,1
Tiempo de Fermentación	90	90
Sensacion de la masa	Fuerte	Fuerte
Volumen Especifico cm3/gr	4,6	4,8
Bread Score	90	94

Interpretación de resultados físicos, químicos y reológicos de diferentes tipos de harinas y su impacto en los productos finales.



MSc ENZO GALLUZZO FRANZESE

Grano de Trigo

El grano de trigo

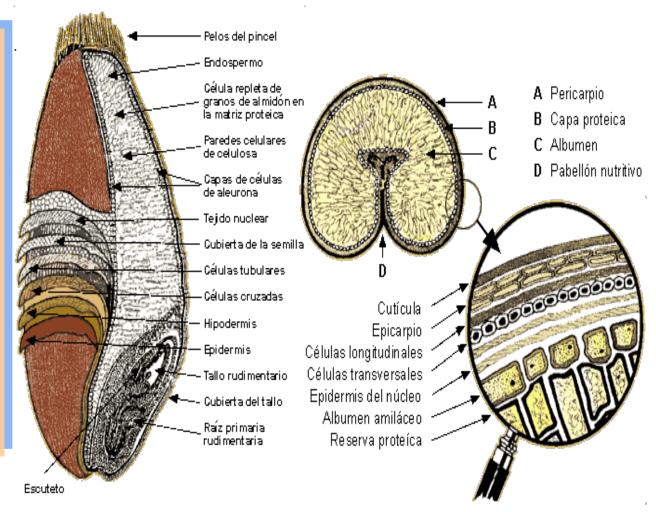
Endospermo \pm 83% del grano

Endospermo = 70 - 80% Almidon

Así que....el contenido total de almidón en el grano de trigo debe andar alrededor del 65%

Pericarpio: 12.5- 14%

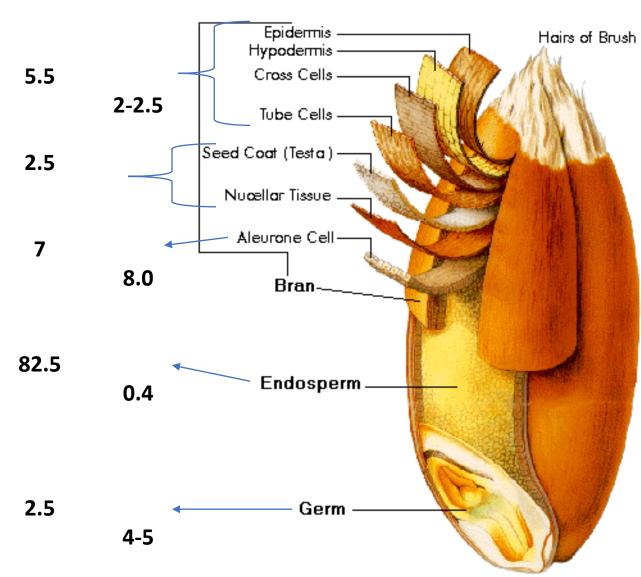
 Cubierta externa llamada afrecho ó salvado

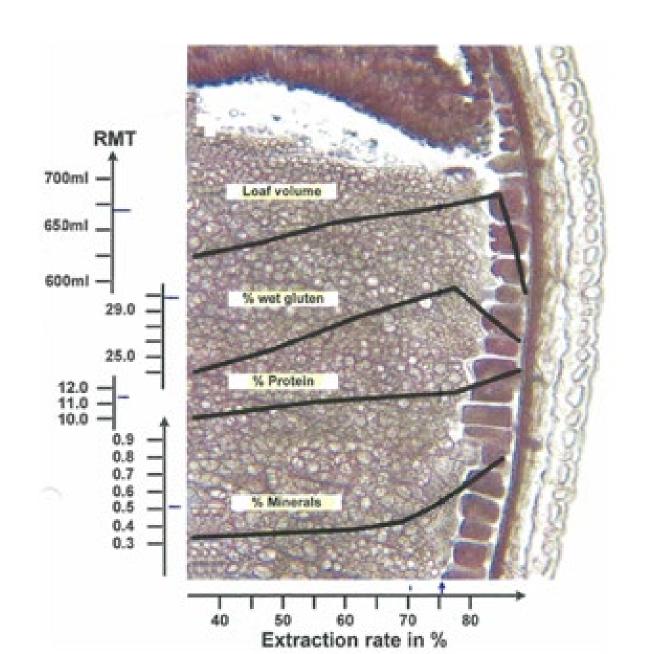

Endospermo:

81 - 83%

 Celdas de almidón en una matriz Proteíca

Germen: 2,5 - 3,5 %


Contiene información genética



Cantidad Ceniza % Material Seco

La relación de cenizas en el grano de Trigo

Comportamiento de algunas variables a lo largo del proceso de molienda

La reología estudia la relacion entre el esfuerzo y la deformación de materiales capaces de fluir

La masa es uno de esos materiales (fluído visco elástico) ya que es susceptible a la deformación

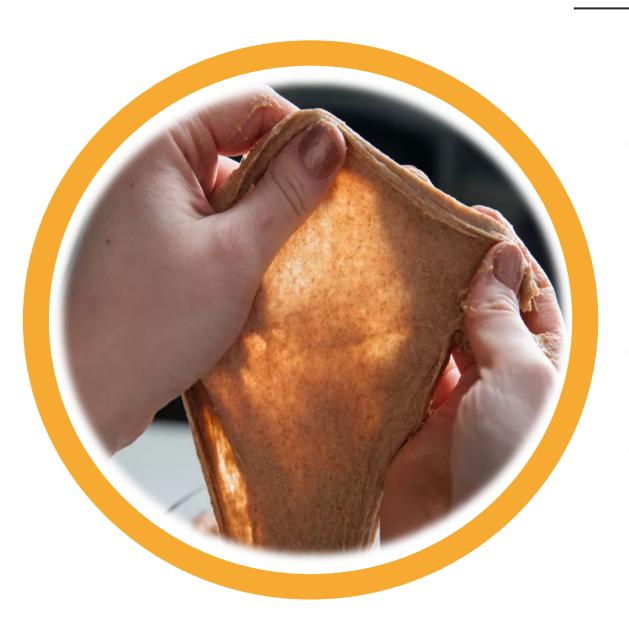
Los parámetros que determinan la reología de la masa (esfuerzo-deformación) son:

- * Fuerza (tenacidad)-elasticidad.
 - * extensibilidad-flexibilidad.

Gluten

Sustancia viscosa/ elástica. No está presente en el trigo.

Se forma cuando la harina de trigo se mezcla con agua (hidratación seguida de desnaturalización) formando la estructura de la masa.


Proteína + agua + trabajo= **Gluten**

Gluten

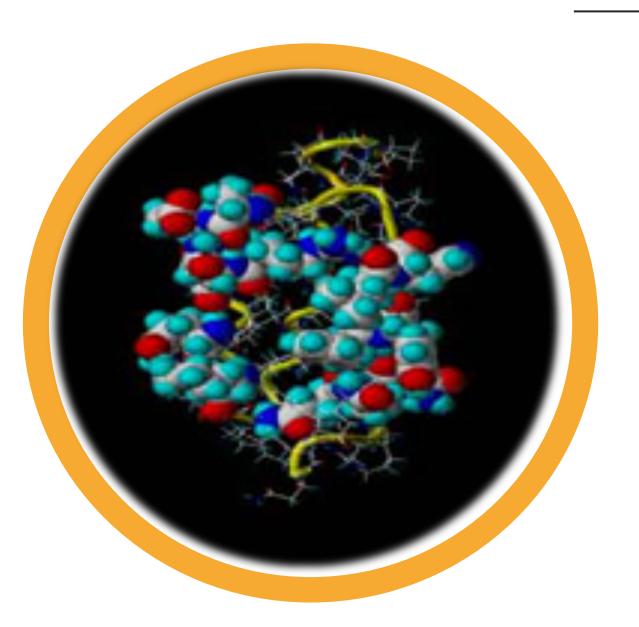
Gliadinas Glutenina

Compleje protéico o matriz continua embebida en los gránulos de almidón que le dan soporte.

GLUTEN

Es la estructura de la masa.

Glutenina (elasticidad y fuerza) y Gliadina (extensibilidad) son las formadoras del gluten.


Los trigos duros difieren de los blandos por diferencia en la proporción entre:

Glutenina/Gliadina

Las proteínas solubles no forman gluten.

Proteinas del Trigo

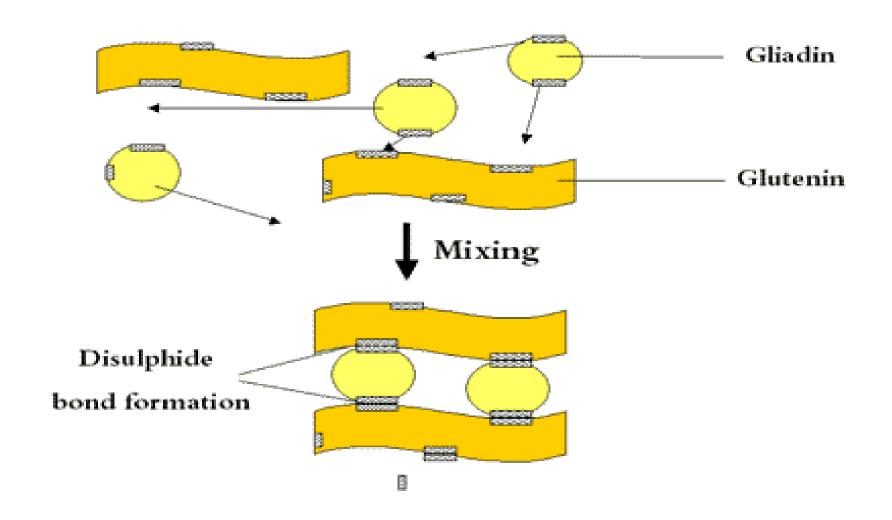
Glutenina: 40%

Albuminas:12%

Globulinas: 8%

Prolaminas: 40%

Proteinas del Trigo



La gliadina: es una proteína pegajosa, semi-fluida. Las moléculas de gliadina son relativamente pequeñas. Posee pocos enlaces disulfuros. Le confiere viscosidad y extensibilidad lo que permite que el gluten se expanda sin romperse cuando se aplican fuerzas externas.

La glutenina. es fibrosa y elástica. Alto peso molecular. Formada por uniones de enlaces S-S. Le confiere elasticidad a la masa y baja extensibilidad. Resiste la deformación exterior es decir retorna a su forma original (fuerza del gluten).

Formación de Enlaces Durante el Amasado

Gluten en la Harina Panadera, Galletera y Sémola Durum

Harina Panadera:

Gliadina 50% (Extensibilidad) Glutenina 50% (Elasticidad) **Gluten** extensible y elástico

Harina Suave:

Gliadina 75% (Extensibilidad) Glutenina 25% (Elasticidad) **Gluten** extensible y poco elástico

Sémola Durum:

Glutenina 75% (Elasticidad)

Gliadina 25% (Extensibilidad)

Agua Gliadinas Gluteninas Energía (Masa)

Gluten

Funciones del GLUTEN

En general

Confiere:

- Volumen.
- •Color de la corteza.
- •Miga.
- •Color de la miga.
- Sabor.

En específico

- •Retener el gas de la fermentación.
- •Equilibrar la elasticidad con la extensibilidad.
- •Formar el esqueleto del pan.
- •Acondicionar la masa (asegurar un producto terminado según las características especificas).
- •Fijar la estructura del pan (coagulación de las proteínas durante el horneo).

EQUIPOS UTILIZADOS PARA MEDIR LAS CARACTERISTICAS REOLOGICAS DE LAS HARINAS

FARINOGRAFO

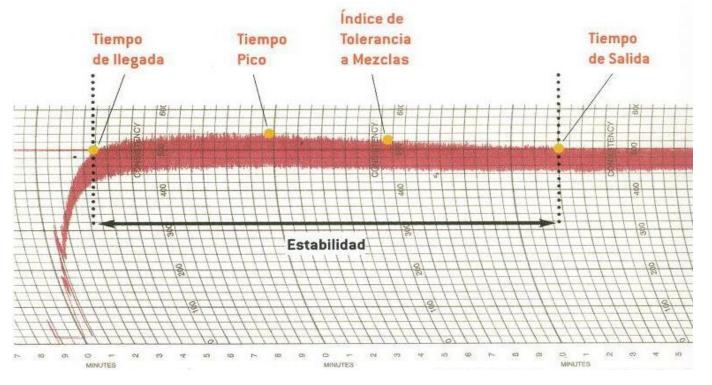
ABSORCION DE AGUA

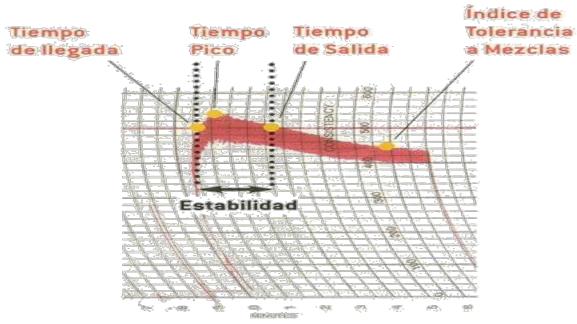
Cantidad de agua absorbida por la harina para formar la masa.

TIEMPO DE DESARROLLO

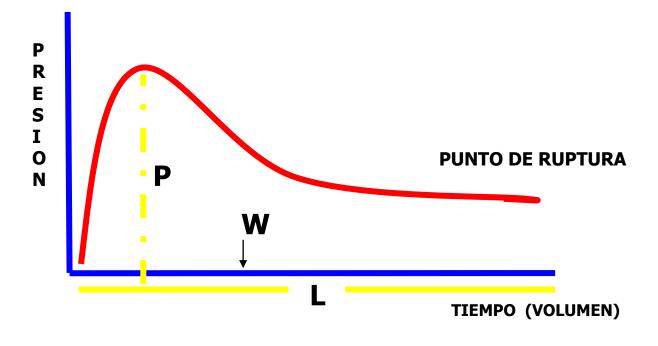
Tiempo necesario para alcanzar la máxima consistencia.

ESTABILIDAD


Intervalo de tiempo durante el cual la masa mantiene la máxima consistencia.


INDICE DE TOLERANCIA

Grado de ablandamiento de la masa.



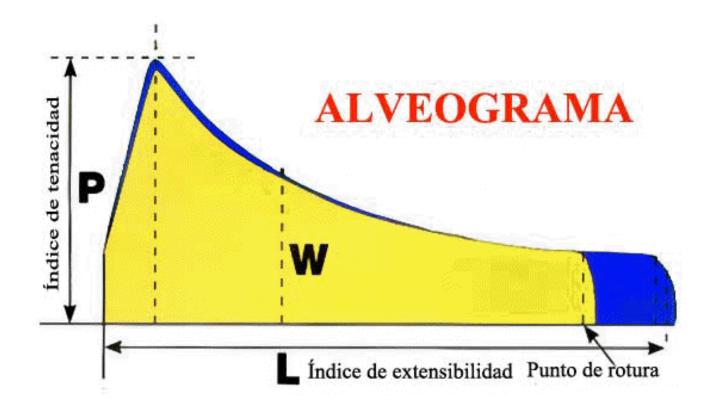
FARINOGRAFO

Valor P

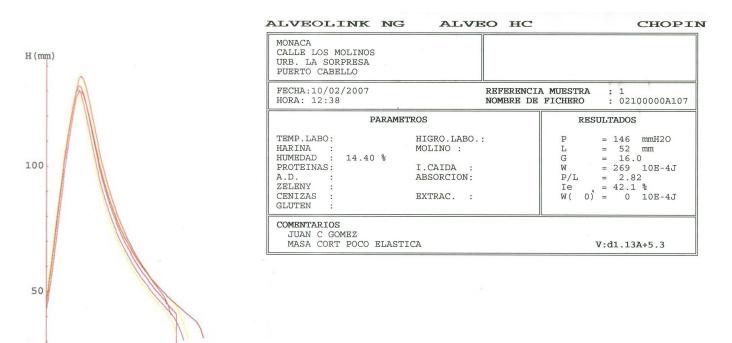
Expresa la tenacidad de la masa y mide la resistencia que opone la masa a ser estirada.

Valor L

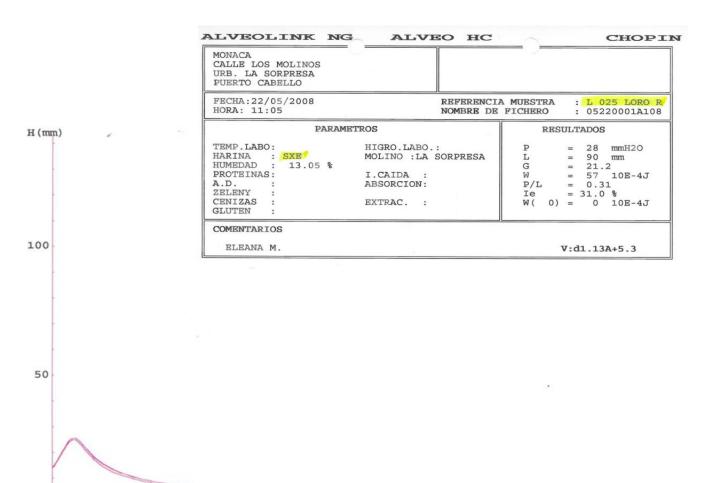
Expresa la extensibilidad de la masa y mide la capacidad de esta para ser estirada, indicando su elasticidad.


Valor W

Expresa la fuerza de la harina e indica el trabajo necesario para deformar una lamina de masa empujada por aire hasta rotura.


Relacion P/L

Indica el equilibrio y es la relación entre la tenacidad y la extensibilidad..


150

L(mm)

100

50

100

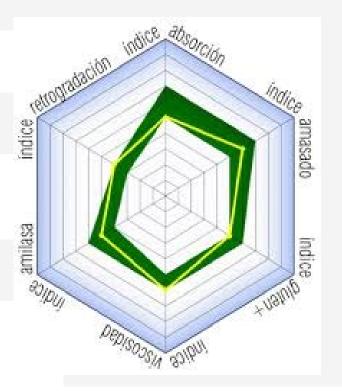
150

L(mm)

50

Tipo de índice Valores obtenidos

ABSORCIÓN De 0 a 9


AMASADO

GLUTEN +

VISCOSIDAD

AMILASA

RETROGRADACIÓN

Significado: mientras el valor sea mayor, aumenta el índice...

... a mayor valor, la harina absorbe más agua

... a mayor valor, la harina es más estable durante el amasado

... a mayor valor, el gluten resiste más el calor

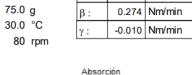
... a mayor valor, aumenta la viscosidad de la masa ante el calor

... a mayor valor, la actividad amilásica es más baja

... a mayor valor, se reduce el tiempo de duración de conservación del producto

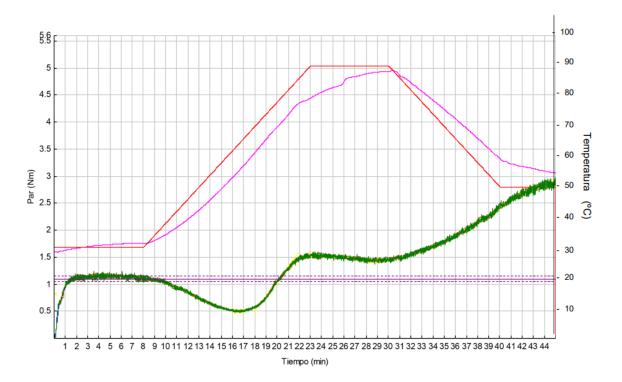
MIXOLAB

Fecha: 10/01/2024 Hora: 09:15


Muestra: Protocolo: Chopin+
Peso de la masa:

Hydration: 61.1 % base 14% (b14) Temperatura del depósito : 30.0 °C

Contenido de 13.4 % Velocidad de amasado : 80 rpm


Indice: 7-53-368

	Tiempo (min)	Par (Nm)	Temp. Masa (°C)	Amplitud (Nm)	Estabilidad (min)
C1	4.00	1.161	30.5	0.069	9.10
CS	8.00	1.118	31.5		7.22
C2	16.62	0.545	55.5		
C3	23.28	1.487	80.0		
C4	28.68	1.485	87.9		
C5	45.00	2.921	54.5		

-0.112 Nm/min

MIXOLAE

Fecha: 05/10/2022 Hora: 09:43

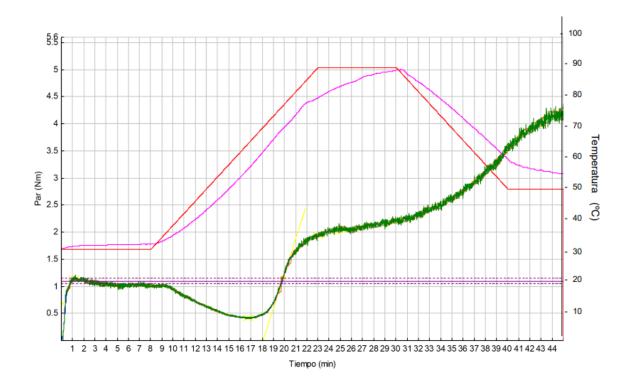
Muestra : Protocolo : Chopin+
Peso de la masa :


 Muestra :
 Peso de la masa :
 75.0 g

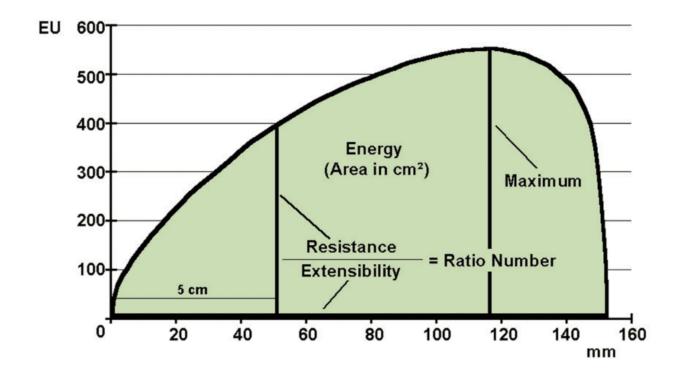
 Hydration :
 53.4 % base 14% (b14)
 Temperatura del depósito :
 30.0 °C

Contenido de 12.4 % Velocidad de amasado : 80 rpm

Indice: 1-22-788


	Tiempo (min)	Par (Nm)	Temp. Masa (°C)	Amplitud (Nm)	Estabilidad (min)
C1	1.17	1.141	31.0	0.066	8.80
cs	8.00	1.012	31.8		6.5
C2	16.78	0.417	56.7		
СЗ	23.00	1.941	80.0		
C4	30.00	2.217	89.1		
C5	45.02	4.217	55.0		

-0.102 Nm/min


0.642 Nm/min

0.054 Nm/min

FXTENSOGRAFO

EXTENSOGRAFO

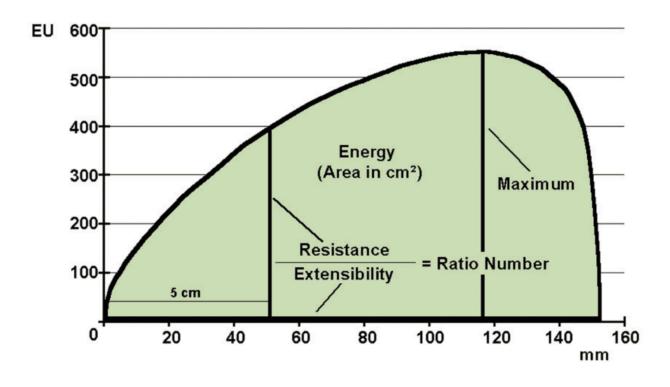
Energia

Es el área bajo la curva, entre mayor es, mayores son los tiempos de fermentación.

Resistencia

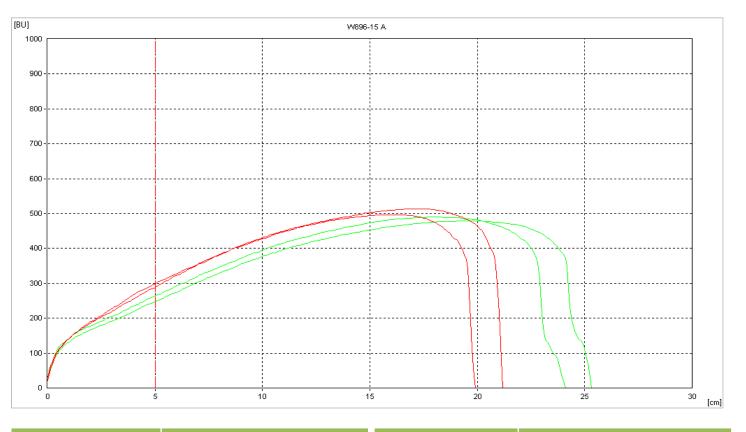
Esta indica la fuerza opuesta para alargar la masa, por lo tanto, es tenacidad.

Extensibilidad

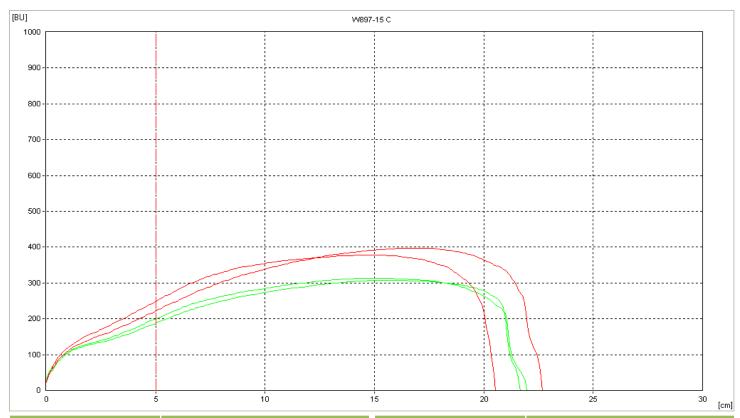

Esta indica el alargamiento de la masa.

Ratio Resistencia/Extensibilidad

Es un indicador del comportamiento de la masa, su estabilidad y volumen potencial de panificación.

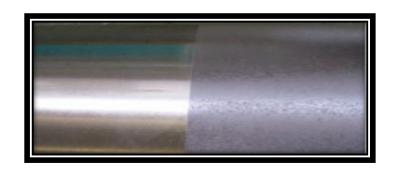

FXTENSOGRAFO

EXTENSOGRAFO

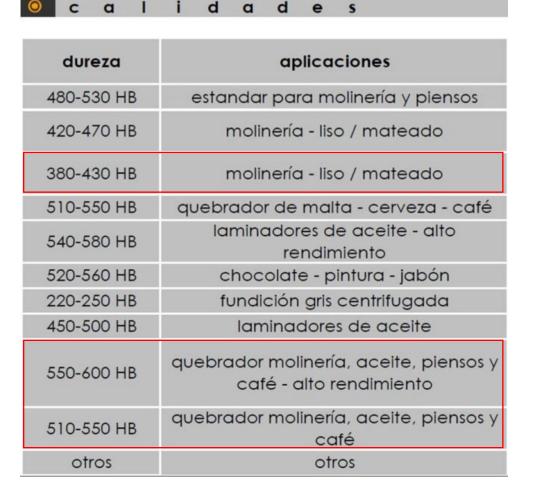


45 Minutos	HARINA SF	135 Minutos	HARINA SF
Rmax, BU	485	Rmax, BU	505
R5, BU	257	R5, BU	295
E,mm	247	E,mm	206
A, cm ²	156	A, cm ²	138
Rmax/E	2,0	Rmax/E	2,5

EXTENSOGRAFO


45 Minutos	HARINA FUERTE	135 Minutos	HARINA FUERTE
Rmax, BU	311	Rmax, BU	387
R5, BU	194	R5, BU	236
E,mm	218	E,mm	216
A, cm ²	92	A, cm ²	113
Rmax/E	1,4	Rmax/E	1,8

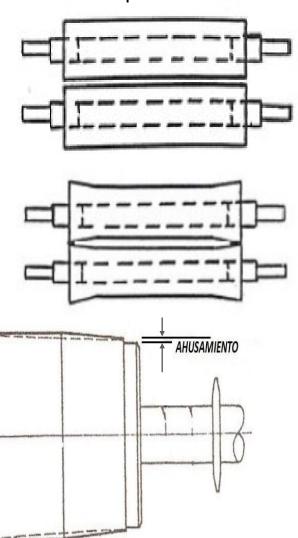
Impacto de la rugosidad de los cilindros lisos y el desgaste de las estrías en los cilindros corrugados; Casos de estudio para comprender el impacto en la extracción de harinas y la calidad de los productos finales.


MSc ENZO GALLUZZO FRANZESE

Los cilindros lisos deben tener la correcta rugosidad y ahusamiento la poder realizar el trabajo adecuado

Cilindro Liso/ Rugosidad

- ✓ Para los cilindros lisos mateados la rugosidad es: 2.5/3.5 Ra
- ✓ Para los cilindros rectificados listos para estriar es: 0.5/0.8 Ra



El ahusamiento es muy importante para el correcto trabajo de los cilindros lisos

Ahusamiento

✓ Ligera reducción en el diámetro al en los extremos del cilindros, que compensa la expansión de material debido al incremento de temperatura durante su funcionamiento.

Dilatación por calentamiento

Correcta graduación o ajuste de las compresiones

- ✓ Alimentación uniforme a lo largo del cilindro
- ✓ Disposición o configuración paralela de los cilindros
- ✓ Verifique la temperatura del producto
- ✓ Verifique la granulación del producto
- ✓ Compruebe el efecto de la molienda en el centro y en los extremos del banco de los cilindros
- ✓ Evalúe el correcto ahusamiento de los cilindros

Impacto de la rugosidad en los cilindros lisos Caso de Estudio No.3

Ensayo realizado con el C1Fn (Primera Comprensión Fina)

CILINDROS	CON RUGOSIDAD <mark>NO</mark>	ADECUADA	CILINDRO	S CON RUGOSIDAD A	DECUADA
AJUSTE (%)	HARINA (%)	ABSORCION (%)	AJUSTE (%)	HARINA (%)	ABSORCION (%)
80	37.2	59.9	65	43.2	63.4

Notas:

- 1. El ajuste en la rendija de molienda, se realizo en base al consumo de energía del motor.
- 2. El % de harina se obtuvo de que atravesó la malla de 180 micrones
- 3. El % de absorción se determino en el farinografo a la harina que atravesó la malla de 180 micrones.

Impacto de la rugosidad en los cilindros lisos Caso de Estudio No.4

Ensayo realizado con el C1Fn (Primera Comprensión Fina)

ANALISIS	Humedad (%)	Cenizas (%)	Gluten (%)	Almidón dañado
SECCION				
M1 (60%)	14	0,45	25	12,2
M1 (75%)	13,8	0,43	23,5	16,1
M1 (90%)	13,5	0,46	21,5	20,5
M1 (Max)	12,5	0,56	18,5	26,4

El buen criterio para el ajuste de las rendijas de molienda es muy importante por el impacto en la calidad de los productos.

Desgaste de las estrías en los cilindros corrugados. CASO DE ESTUDIO No.5 Impacto en el proceso de molienda Granulometría en Molienda B1/T1

SECC/ENRG/MT	T1/B1 - 0		T1/B1 - 12.5k		T1/B1 – 25k	
LADO	IZQ	DER	IZQ	DER	IZQ	DER
TEMPERATURA° C	36	37	42	44	56	58
CONSUM/NOM (%)	65	65	80	80	100	100

ABERTURA REND. MOL.	0,5 mm
DISPOSICION/ACCION	Dorso : Dorso
NUMERO DE ESTRIAS	4 Est/cm
INCLINACION ESTRIADO	4%
DIFERENCIAL	1:2.5

Desgaste de las estrías en los cilindros corrugados. CASO DE ESTUDIO No.5 Impacto en el proceso de molienda Granulometría en Molienda B1/T1

Tamiz/Abertura (u)	T1/B1 - 65% - 0		T1/B1 – 80% -12.5k		T1/B1 - 100% -25k	
Tamiz (μ)	0/0	Cenizas %	0/0	Cenizas %	%	Cenizas %
1180	64.1	2,11	64.5	2,25	69.6	2,33
850	9.3	1.45	9.1	1.39	10.4	1.28
500	10.6	0.92	10.8	0.99	8.2	0.85
250	8.5	0.71	9,3	0.72	6.7	0.75
<250	7.5	0.48	6,3	0.45	5.1	0.51

ABERTURA REND. MOL.	0,5-0,55 mm
DISPOSICION/ACCION	Dorso : Dorso
NUMERO DE ESTRIAS	4 Est/cm
INCLINACION ESTRIADO	4%
DIFERENCIAL	1:2.5

Muchas Gracias!

Muito Obrigato!

Muchas Gracias!
Thank you so much!
Grazie Molte!
Muito Obrigato!

Thank you so much!

Grazie Molte!

+57 317 3664078

+57 317 3664078

enzogalluzzof@gmail.com

www.eslamo.com.ve